Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Catalysis of an SN2 pathway by geometric preorganization

Abstract

Bimolecular nucleophilic substitution (SN2) mechanisms occupy a central place in the historical development and teaching of the field of organic chemistry1. Despite the importance of SN2 pathways in synthesis, catalytic control of ionic SN2 pathways is rare and notably uncommon even in biocatalysis2,3, reflecting the fact that any electrostatic interaction between a catalyst and the reacting ion pair necessarily stabilizes its charge and, by extension, reduces polar reactivity. Nucleophilic halogenase enzymes navigate this tradeoff by desolvating and positioning the halide nucleophile precisely on the SN2 trajectory, using geometric preorganization to compensate for the attenuation of nucleophilicity4. Here we show that a small-molecule (646 Da) hydrogen-bond-donor catalyst accelerates the SN2 step of an enantioselective Michaelis–Arbuzov reaction by recapitulating the geometric preorganization principle used by enzymes. Mechanistic and computational investigations show that the hydrogen-bond donor diminishes the reactivity of the chloride nucleophile yet accelerates the rate-determining dealkylation step by reorganizing both the phosphonium cation and the chloride anion into a geometry that is primed to enter the SN2 transition state. This new enantioselective Arbuzov reaction affords highly enantioselective access to an array of H-phosphinates, which are in turn versatile P-stereogenic building blocks amenable to myriad derivatizations. This work constitutes, to our knowledge, the first demonstration of catalytic enantiocontrol of the phosphonium dealkylation step, establishing a new platform for the synthesis of P-stereogenic compounds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Applying enzymatic strategies to the catalysis of ionic SN2 mechanisms.
Fig. 2: Reaction discovery and isolation of catalyst components.
Fig. 3: Mechanistic studies.
Fig. 4: Origins of catalytic rate acceleration.
Fig. 5: Enantioselective phosphonium dealkylation of phosphonites and stereospecific elaborations of H-phosphinate products.

Similar content being viewed by others

Data availability

The data that support the findings in this work are available in the paper and in the Supplementary Information.

References

  1. Anslyn, E. V. & Dougherty, D. A. in Modern Physical Organic Chemistry 637–670 (Univ. Science Books, 2005).

  2. O’Hagan, D. & Schmidberger, J. W. Enzymes that catalyse SN2 reaction mechanisms. Nat. Prod. Rep. 27, 900–918 (2010).

    PubMed  Google Scholar 

  3. Dewar, M. J. S. New ideas about enzyme reactions. Enzyme 36, 8–20 (2017).

    Google Scholar 

  4. Agarwal, V. et al. Enzymatic halogenation and dehalogenation reactions: pervasive and mechanistically diverse. Chem. Rev. 117, 5619–5674 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Parker, A. J. Protic-dipolar aprotic solvent effects on rates of bimolecular reactions. Chem. Rev. 69, 1–32 (1969).

    CAS  Google Scholar 

  6. Dong, C. et al. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427, 561–565 (2004).

    ADS  CAS  PubMed  Google Scholar 

  7. Zhu, X., Robinson, D. A., McEwan, A. R., O’Hagan, D. & Naismith, J. H. Mechanism of enzymatic fluorination in Streptomyces cattleya. J. Am. Chem. Soc. 129, 14597–14604 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Senn, H. M., O’Hagan, D. & Thiel, W. Insight into enzymatic C−F bond formation from QM and QM/MM calculations. J. Am. Chem. Soc. 127, 13643–13655 (2005).

    CAS  PubMed  Google Scholar 

  9. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    CAS  PubMed  Google Scholar 

  10. Bruice, T. C. & Benkovic, S. J. Chemical basis for enzyme catalysis. Biochemistry 39, 6267–6274 (2000).

    CAS  PubMed  Google Scholar 

  11. Uyeda, C. & Jacobsen, E. N. Transition-state charge stabilization through multiple non-covalent interactions in the guanidinium-catalyzed enantioselective Claisen rearrangement. J. Am. Chem. Soc. 133, 5062–5075 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin, S. & Jacobsen, E. N. Thiourea-catalysed ring opening of episulfonium ions with indole derivatives by means of stabilizing non-covalent interactions. Nat. Chem. 4, 817–824 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Taylor, M. S. & Jacobsen, E. N. Asymmetric catalysis by chiral hydrogen-bond donors. Angew. Chem. Int. Ed. 45, 1520–1543 (2006).

    CAS  Google Scholar 

  14. Zhou, H. et al. Organocatalytic stereoselective cyanosilylation of small ketones. Nature 605, 84–89 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Metrano, A. J. et al. Asymmetric catalysis mediated by synthetic peptides, version 2.0: expansion of scope and mechanisms. Chem. Rev. 120, 11479–11615 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Taylor, M. S. & Jacobsen, E. N. Highly enantioselective catalytic acyl-Pictet−Spengler reactions. J. Am. Chem. Soc. 126, 10558–10559 (2004).

    CAS  PubMed  Google Scholar 

  17. Taylor, M. S., Tokunaga, N. & Jacobsen, E. N. Enantioselective thiourea-catalyzed acyl-Mannich reactions of isoquinolines. Angew. Chem. Int. Ed. 44, 6700–6704 (2005).

    CAS  Google Scholar 

  18. Doyle, A. G. & Jacobsen, E. N. Small-molecule H-bond donors in asymmetric catalysis. Chem. Rev. 107, 5713–5743 (2007).

    CAS  PubMed  Google Scholar 

  19. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    CAS  Google Scholar 

  20. Zuend, S. J. & Jacobsen, E. N. Mechanism of amido-thiourea catalyzed enantioselective imine hydrocyanation: transition state stabilization via multiple non-covalent interactions. J. Am. Chem. Soc. 131, 15358–15374 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Pupo, G. et al. Hydrogen bonding phase-transfer catalysis with potassium fluoride: enantioselective synthesis of β-fluoroamines. J. Am. Chem. Soc. 141, 2878–2883 (2019).

    CAS  PubMed  Google Scholar 

  22. Strassfeld, D. A. & Jacobsen, E. N. in Supramolecular Catalysis (eds van Leeuwen, P. W. N. M. & Raynal, M.) 361–385 (Wiley, 2022).

  23. Bhattacharya, A. K. & Thyagarajan, G. Michaelis–Arbuzov rearrangement. Chem. Rev. 81, 415–430 (1981).

    CAS  Google Scholar 

  24. Razumov, A. I. Mechanism of the Arbuzov rearrangement. Zh. Obshch. Khim. 29, 1635–1639 (1959).

    CAS  Google Scholar 

  25. Razumov, A. I. & Bankovskaya, N. N. Preparation and some properties of intermediate products of the Arbuzov rearrangement. Dokl. Akad. Nauk BSSR 116, 241 (1957).

    CAS  Google Scholar 

  26. Appel, R. Tertiary phosphane/tetrachloromethane, a versatile reagent for chlorination, dehydration, and P–N linkage. Angew. Chem. Int. Ed. Engl. 14, 801–811 (1975).

    Google Scholar 

  27. Staudinger, H. & Meyer, J. Über neue organische Phosphorverbindungen III. Phosphinmethylenderivate und Phosphinimine. Helv. Chim. Acta 2, 635–646 (1919).

    CAS  Google Scholar 

  28. Niland, C. J., Ruddy, J. J., O’Fearraigh, M. P. & McGarrigle, E. M. Asymmetric organocatalyzed synthesis of α-aminophosphinates via thiourea anion-binding catalysis. Eur. J. Org. Chem. 27, e202301212 (2024).

    CAS  Google Scholar 

  29. Lemouzy, S., Giordano, L., Hérault, D. & Buono, G. Introducing chirality at phosphorus atoms: an update on the recent synthetic strategies for the preparation of optically pure P-stereogenic molecules. Eur. J. Org. Chem. 2020, 3351–3366 (2020).

    CAS  Google Scholar 

  30. Ye, X., Peng, L., Bao, X., Tan, C.-H. & Wang, H. Recent developments in highly efficient construction of P-stereogenic centers. Green Synth. Catal. 2, 6–18 (2021).

    Google Scholar 

  31. Liu, J., Chen, H., Wang, M., He, W. & Yan, J.-L. Organocatalytic asymmetric synthesis of P-stereogenic molecules. Front. Chem. 11, 1132025 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kühl, O. in Phosphorus-31 NMR Spectroscopy: A Concise Introduction for the Synthetic Organic and Organometallic Chemist (ed. Kühl, O.) 7–23 (Springer, 2008).

  33. Neufeld, R. & Stalke, D. Accurate molecular weight determination of small molecules via DOSY-NMR by using external calibration curves with normalized diffusion coefficients. Chem. Sci. 6, 3354–3364 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Burés, J. A simple graphical method to determine the order in catalyst. Angew. Chem. Int. Ed. 55, 2028–2031 (2016).

    ADS  Google Scholar 

  35. Shaik, S. S. in Progress in Physical Organic Chemistry (ed. Taft, R. W.) 197–337 (1985).

  36. Lu, T. & Chen, Q. Independent gradient model based on Hirshfeld partition: A new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).

    CAS  PubMed  Google Scholar 

  37. Nishio, M. The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys. 13, 13873–13900 (2011).

    CAS  PubMed  Google Scholar 

  38. Gatineau, D. et al. H-adamantylphosphinates as universal precursors of P-stereogenic compounds. J. Org. Chem. 80, 4132–4141 (2015).

    CAS  PubMed  Google Scholar 

  39. Fu, X. et al. Chiral guanidinium salt catalyzed enantioselective phospha-Mannich reactions. Angew. Chem. Int. Ed. 48, 7387–7390 (2009).

    CAS  Google Scholar 

  40. Forbes, K. C. & Jacobsen, E. N. Enantioselective hydrogen-bond-donor catalysis to access diverse stereogenic-at-P(V) compounds. Science 376, 1230–1236 (2022).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Formica, M. et al. Catalytic enantioselective nucleophilic desymmetrization of phosphonate esters. Nat. Chem. 15, 714–721 (2023).

  42. Kolodiazhna, A. O. & Kolodiazhnyi, O. I. Catalytic asymmetric synthesis of C-chiral phosphonates. Symmetry 14, 1758 (2022).

    ADS  CAS  Google Scholar 

  43. Yamagishi, T. et al. Diastereoselective synthesis of β-substituted α-hydroxyphosphinates through hydrophosphinylation of α-heteroatom-substituted aldehydes. Tetrahedron 59, 767–772 (2003).

    CAS  Google Scholar 

  44. Xu, Q., Zhao, C.-Q. & Han, L.-B. Stereospecific nucleophilic substitution of optically pure H-phosphinates: a general way for the preparation of chiral P-stereogenic phosphine oxides. J. Am. Chem. Soc. 130, 12648–12655 (2008).

    CAS  PubMed  Google Scholar 

  45. Han, Z. S. et al. General and stereoselective method for the synthesis of sterically congested and structurally diverse P-stereogenic secondary phosphine oxides. Org. Lett. 19, 1796–1799 (2017).

    CAS  PubMed  Google Scholar 

  46. Gatineau, D., Giordano, L. & Buono, G. Bulky, optically active P-stereogenic phosphine–boranes from pure H-menthylphosphinates. J. Am. Chem. Soc. 133, 10728–10731 (2011).

    CAS  PubMed  Google Scholar 

  47. Xiong, B. et al. Systematic study for the stereochemistry of the Atherton–Todd reaction. Tetrahedron 69, 9373–9380 (2013).

    CAS  Google Scholar 

  48. Xiong, B., Shen, R., Goto, M., Yin, S.-F. & Han, L.-B. Highly selective 1,4- and 1,6-addition of P(O)–H compounds to p-quinones: a divergent method for the synthesis of C- and O-phosphoryl hydroquinone derivatives. Chem. Eur. J. 18, 16902–16910 (2012).

    CAS  PubMed  Google Scholar 

  49. Han, L.-B. & Zhao, C.-Q. Stereospecific addition of H−P bond to alkenes: a simple method for the preparation of (RP)-phenylphosphinates. J. Org. Chem. 70, 10121–10123 (2005).

    CAS  PubMed  Google Scholar 

  50. Wang, W.-M. et al. Stereospecific preparations of P-stereogenic phosphonothioates and phosphonoselenoates. J. Org. Chem. 81, 6843–6847 (2016).

    ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health through grant nos. GM043214 and GM 149244, and F32 postdoctoral fellowship (GM136042) to G.J.L. We thank D. Cui and A. Lowe (Harvard University) for assistance with the NMR experiments, and J. Gair, M. Isomura and S. Nistanaki for their helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

G.J.L. and E.N.J. conceived the work; G.J.L. and M.H.S. designed and conducted the experiments; E.N.J. supervised and directed the research; and all authors wrote the paper.

Corresponding author

Correspondence to Eric N. Jacobsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Origins of enantioselectivity.

All calculations were performed at the B3LYP-D3/6-311 + + G (d,p)/PCM(toluene)//B3LYP-D3/def2-SVP/PCM(toluene) level of theory at 195.15 K and 1 atm. Most hydrogens are hidden for clarity. (A) Analysis of non-covalent interactions (B) Density-functional-theory-modeled diastereomeric transition states for dealkylation with highlighted differential stabilizing interactions hypothesized to be the origin of enantioinduction.

Supplementary information

Supplementary Information

This file includes Materials and Methods, Supplementary Text, Supplementary Figs. 1–13, Supplementary Tables 1–6 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovinger, G.J., Sak, M.H. & Jacobsen, E.N. Catalysis of an SN2 pathway by geometric preorganization. Nature 632, 1052–1059 (2024). https://doi.org/10.1038/s41586-024-07811-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07811-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing