Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Signatures of hybridization of multiple Majorana zero modes in a vortex

Abstract

Majorana zero modes (MZMs) are emergent zero-energy topological quasiparticles that are their own antiparticles1,2. Detected MZMs are spatially separated and electrically neutral, so producing hybridization between MZMs is extremely challenging in superconductors3,4. Here, we report the magnetic field response of vortex bound states in superconducting topological crystalline insulator SnTe (001) films. Several MZMs were predicted to coexist in a single vortex due to magnetic mirror symmetry. Using a scanning tunnelling microscope equipped with a three-axis vector magnet, we found that the zero-bias peak (ZBP) in a single vortex exhibits an apparent anisotropic response even though the magnetic field is weak. The ZBP can robustly extend a long distance of up to approximately 100 nm at the (001) surface when the magnetic field is parallel to the (\(1\bar{1}0\))-type mirror plane, otherwise it displays an asymmetric splitting. Our systematic simulations demonstrate that the anisotropic response cannot be reproduced with trivial ZBPs. Although the different MZMs cannot be directly distinguished due to the limited energy resolution in our experiments, our comparisons between experimental measurements and theoretical simulations strongly support the existence and hybridization of symmetry-protected multiple MZMs. Our work demonstrates a way to hybridize different MZMs by controlling the orientation of the magnetic field and expands the types of MZM available for tuning topological states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology and superconductivity of the SnTe/Pb heterostructure.
Fig. 2: Thickness dependence of vortex bound states in SnTe films under a vertical magnetic field of 0.03 T.
Fig. 3: Vortex bound states in tilted magnetic fields not parallel to any mirror plane of SnTe (001).
Fig. 4: Vortex bound states in the tilted magnetic fields parallel to the (010) and \((1\bar{1}0)\) mirror planes of SnTe (001).
Fig. 5: Comparison of simulated vortex bound states in SnTe (001) with low and high energy resolution.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are presented within the paper and Supplementary Information. Source data are provided with this paper. Additional data are available from the corresponding authors upon reasonable request.

Code availability

The code for this paper is available from the corresponding authors upon reasonable request.

References

  1. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057 (2011).

    Article  ADS  CAS  Google Scholar 

  2. Beenakker, C. W. J. Search for Majorana fermions in superconductors. Annu. Rev. Condens. Matter Phys. 4, 113–136 (2013).

    Article  ADS  CAS  Google Scholar 

  3. Albrecht, S. M. et al. Exponential protection of zero modes in Majorana islands. Nature 531, 206–209 (2016).

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Schneider, L. et al. Precursors of Majorana modes and their length-dependent energy oscillations probed at both ends of atomic Shiba chains. Nat. Nanotechnol. 17, 384–389 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  5. Mourik, V. et al. Signatures of Majorana fermions in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012).

    Article  ADS  PubMed  CAS  Google Scholar 

  6. Nadj-Perge, S. et al. Observation of Majorana fermions in ferromagnetic atomic chains on a superconductor. Science 346, 602–607 (2014).

    Article  ADS  PubMed  CAS  Google Scholar 

  7. Jeon, S. et al. Distinguishing a Majorana zero mode using spin-resolved measurements. Science 358, 772–776 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  8. Xu, J.-P. et al. Experimental detection of a Majorana mode in the core of a magnetic vortex inside a topological insulator-superconductor Bi2Te3/NbSe2 heterostructure. Phys. Rev. Lett. 114, 017001 (2015).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Sun, H.-H. et al. Majorana zero mode detected with spin selective Andreev reflection in the vortex of a topological superconductor. Phys. Rev. Lett. 116, 257003 (2016).

    Article  ADS  PubMed  Google Scholar 

  10. Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  11. Liu, Q. et al. Robust and clean Majorana zero mode in the vortex core of high-temperature superconductor (Li0.84Fe0.16)OHFeSe. Phys. Rev. X 8, 041056 (2018).

    CAS  Google Scholar 

  12. Li, M. et al. Ordered and tunable Majorana-zero-mode lattice in naturally strained LiFeAs. Nature 606, 890–895 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Haim, A. & Oreg, Y. Time-reversal-invariant topological superconductivity in one and two dimensions. Phys. Rep. 825, 1–48 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  14. Valentini, M. et al. Majorana-like Coulomb spectroscopy in the absence of zero-bias peaks. Nature 612, 442–447 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  15. Mier, C., Choi, D.-J. & Lorente, N. Moiré dispersion of edge states in spin chains on superconductors. Phys. Rev. Res. 4, L032010 (2022).

    Article  CAS  Google Scholar 

  16. Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    Article  CAS  Google Scholar 

  17. Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  18. Qi, X.-L., Hughes, T. L., Raghu, S. & Zhang, S. C. Time-reversal-invariant topological superconductors and superfluids in two and three dimensions. Phys. Rev. Lett. 102, 187001 (2009).

    Article  ADS  PubMed  Google Scholar 

  19. Wong, C. L. M. & Law, K. T. Majorana Kramers doublets in \({d}_{{x}^{2}-{y}^{2}}\)-wave superconductors with Rashba spin–orbit coupling. Phys. Rev. B 86, 184516 (2012).

    Article  ADS  Google Scholar 

  20. Zhang, F., Kane, C. L. & Mele, E. J. Time-reversal-invariant topological superconductivity and Majorana Kramers pairs. Phys. Rev. Lett. 111, 056402 (2013).

    Article  ADS  PubMed  Google Scholar 

  21. Zhang, F., Kane, C. L. & Mele, E. J. Topological mirror superconductivity. Phys. Rev. Lett. 111, 056403 (2013).

    Article  ADS  PubMed  Google Scholar 

  22. Liu, X.-J., He, J. J. & Law, K. T. Demonstrating lattice symmetry protection in topological crystalline superconductors. Phys. Rev. B 90, 235141 (2014).

    Article  ADS  Google Scholar 

  23. Kobayashi, S. & Furusaki, A. Double Majorana vortex zero modes in superconducting topological crystalline insulators with surface rotation anomaly. Phys. Rev. B 102, 180505 (2020).

    Article  ADS  CAS  Google Scholar 

  24. Fang, C., Gilbert, M. J. & Bernevig, B. A. New class of topological superconductors protected by magnetic group symmetries. Phys. Rev. Lett. 112, 106401 (2014).

    Article  ADS  PubMed  Google Scholar 

  25. Zou, J., Xie, Q., Song, Z. & Xu, G. New types of topological superconductors under local magnetic symmetries. Natl Sci. Rev. 8, nwaa169 (2021).

    Article  PubMed  Google Scholar 

  26. Xiong, Y., Yamakage, A., Kobayashi, S., Sato, M. & Tanaka, Y. Anisotropic magnetic responses of topological crystalline superconductors. Crystals 7, 58 (2017).

    Article  Google Scholar 

  27. Kobayashi, S., Yamakage, A., Tanaka, Y. & Sato, M. Majorana multipole response of topological superconductors. Phys. Rev. Lett. 123, 097002 (2019).

    Article  ADS  MathSciNet  PubMed  CAS  Google Scholar 

  28. Yamazaki, Y., Kobayashi, S. & Yamakage, A. Magnetic response of Majorana Kramers pairs with an order-two symmetry. Phys. Rev. B 103, 094508 (2021).

    Article  ADS  CAS  Google Scholar 

  29. Kobayashi, S., Yamazaki, Y., Yamakage, A. & Sato, M. Majorana multipole response: general theory and application to wallpaper groups. Phys. Rev. B 103, 224504 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Hsieh, T. H. et al. Topological crystalline insulators in the SnTe material class. Nat. Commun. 3, 982 (2012).

    Article  ADS  PubMed  Google Scholar 

  31. Tanaka, Y. et al. Experimental realization of a topological crystalline insulator in SnTe. Nat. Phys. 8, 800–803 (2012).

    Article  CAS  Google Scholar 

  32. Xu, S. Y. et al. Observation of a topological crystalline insulator phase and topological phase transition in Pb1−xSnxTe. Nat. Commun. 3, 1192 (2012).

    Article  ADS  PubMed  Google Scholar 

  33. Yang, H. et al. Superconductivity of topological surface states and strong proximity effect in Sn1−xPbxTe–Pb heterostructures. Adv. Mater. 31, 1905582 (2019).

    Article  CAS  Google Scholar 

  34. Yang, H. et al. Multiple in-gap states induced by topological surface states in the superconducting topological crystalline insulator heterostructure Sn1−xPbxTe–Pb. Phys. Rev. Lett. 125, 136802 (2020).

    Article  ADS  PubMed  CAS  Google Scholar 

  35. Hashimoto, T., Yada, K., Sato, M. & Tanaka, Y. Surface electronic state of superconducting topological crystalline insulator. Phys. Rev. B 92, 174527 (2015).

    Article  ADS  Google Scholar 

  36. Stolyarov, V. S. et al. Expansion of a superconducting vortex core into a diffusive metal. Nat. Commun. 9, 2277 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Renner, C., Kent, A. D., Niedermann, P., Fischer, Ø. & Lévy, F. Scanning tunneling spectroscopy of a vortex core from the clean to the dirty limit. Phys. Rev. Lett. 67, 1650 (1991).

    Article  ADS  PubMed  CAS  Google Scholar 

  38. Kim, H., Nagai, Y., Rózsa, L., Schreyer, D. & Wiesendanger, R. Anisotropic non-split zero-energy vortex bound states in a conventional superconductor. Appl. Phys. Rev. 8, 031417 (2021).

    Article  ADS  CAS  Google Scholar 

  39. Liu, W. et al. Tunable vortex Majorana modes controlled by strain in homogeneous LiFeAs. Quantum Front. 1, 20 (2022).

    Article  Google Scholar 

  40. Kong, L. et al. Majorana zero modes in impurity-assisted vortex of LiFeAs superconductor. Nat. Commun. 12, 4146 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  41. Horikoshi, K., Tong, X., Nagao, T. & Hasegawa, S. Structural phase transitions of Pb-adsorbed Si(111) surfaces at low temperatures. Phys. Rev. B 60, 13287 (1999).

    Article  ADS  CAS  Google Scholar 

  42. Guo, Y. et al. Superconductivity modulated by quantum size effects. Science 306, 1915 (2004).

    Article  ADS  PubMed  CAS  Google Scholar 

  43. Weiße, A., Wellein, G., Alvermann, A. & Fehske, H. The kernel polynomial method. Rev. Mod. Phys. 78, 275 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  44. Galvis, J. A. et al. Tilted vortex cores and superconducting gap anisotropy in 2H-NbSe2. Commun. Phys. 1, 30 (2018).

    Article  Google Scholar 

  45. Zhu, Z. et al. Discovery of segmented Fermi surface induced by Cooper pair momentum. Science 374, 1381 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  46. Tinkham, M. Effect of fluxoid quantization on transitions of superconducting films. Phys. Rev. 129, 2413 (1963).

    Article  ADS  Google Scholar 

  47. Liu, J., Duan, W. & Fu, L. Two types of surface states in topological crystalline insulators. Phys. Rev. B 88, 241303(R) (2013).

    Article  ADS  Google Scholar 

  48. Dybko, K. et al. Experimental evidence for topological surface states wrapping around a bulk SnTe crystal. Phys. Rev. B 96, 205129 (2017).

    Article  Google Scholar 

  49. Yuan, N. F. Q. & Fu, L. Zeeman-induced gapless superconductivity with a partial Fermi surface. Phys. Rev. B 97, 115139 (2018).

    Article  ADS  CAS  Google Scholar 

  50. Pan, X.-H., Chen, L., Liu, D. E., Zhang, F.-C. & Liu, X. Meissner effect induced Majorana zero modes at small magnetic field. Phys. Rev. Lett. 132, 036602 (2024).

    Article  ADS  PubMed  CAS  Google Scholar 

  51. López Sancho, M. P., López Sancho, J. M. & Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F: Met. Phys. 15, 851 (1985).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Ministry of Science and Technology of China (Grant Nos. 2019YFA0308600, 2021YFA1401500 and 2020YFA0309000), the National Natural Science Foundation of China (Grant Nos. 11861161003, 12104293, 92365302, 22325203, 92265105, 92065201, 12074247 and 12174252), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB28000000), the Science and Technology Commission of Shanghai Municipality (Grant Nos. 19JC1412701, 2019SHZDZX01 and 20QA1405100), the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302500) and the China National Postdoctoral Program for Innovative Talents (Grant No. BX2021185). Y.Z., C.W. and J.L. also acknowledge financial support from the Hong Kong Research Grants Council (Projects No. N_HKUST626/18, 26302118 and 16305019). The theoretical simulations were conducted at the Hefei Advanced Computing Center.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., J.L. and J.J. supervised the research. H.Y. and T.L. performed the experiments with the help of B.X., W.Z. and Z.Y. C.Y.W. and Y.Z. performed the simulations. D.G., S.W., H.Z., C.L., L.F., J.L., Y.L. and J.J. analysed the results. Y.L., J.L. and J.J. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Junwei Liu, Yaoyi Li or Jinfeng Jia.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Satoshi Fujimoto and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Notes 1–4, references and Figs. 1–51.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Wan, C.Y., Yang, H. et al. Signatures of hybridization of multiple Majorana zero modes in a vortex. Nature 633, 71–76 (2024). https://doi.org/10.1038/s41586-024-07857-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07857-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing