Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Micronuclear battery based on a coalescent energy transducer

Abstract

Micronuclear batteries harness energy from the radioactive decay of radioisotopes to generate electricity on a small scale, typically in the nanowatt or microwatt range1,2. Contrary to chemical batteries, the longevity of a micronuclear battery is tied to the half-life of the used radioisotope, enabling operational lifetimes that can span several decades3. Furthermore, the radioactive decay remains unaffected by environmental factors such as temperature, pressure and magnetic fields, making the micronuclear battery an enduring and reliable power source in scenarios in which conventional batteries prove impractical or challenging to replace4. Common radioisotopes of americium (241Am and 243Am) are α-decay emitters with half-lives longer than hundreds of years. Severe self-adsorption in traditional architectures of micronuclear batteries impedes high-efficiency α-decay energy conversion, making the development of α-radioisotope micronuclear batteries challenging5,6. Here we propose a micronuclear battery architecture that includes a coalescent energy transducer by incorporating 243Am into a luminescent lanthanide coordination polymer. This couples radioisotopes with energy transducers at the molecular level, resulting in an 8,000-fold enhancement in energy conversion efficiency from α decay energy to sustained autoluminescence compared with that of conventional architectures. When implemented in conjunction with a photovoltaic cell that translates autoluminescence into electricity, a new type of radiophotovoltaic micronuclear battery with a total power conversion efficiency of 0.889% and a power per activity of 139 microwatts per curie (μW Ci−1) is obtained.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Two different architectures of radiophotovoltaic batteries.
Fig. 2: Synthesis and characterization of the autoluminescence properties of the TbMel:1%Am sample.
Fig. 3: Experiment and Monte Carlo dose assessment of energy conversion between 243Am metal source model and coalescent energy transducer model.
Fig. 4: Characterization of radiophotovoltaic nuclear batteries.

Similar content being viewed by others

Data availability

All the data presented in this work are fully available from the corresponding authors. Source data for Figs. 24 are provided in the Supplementary Source Data. The crystallographic data have been deposited at the Cambridge Crystallographic Data Centre with numbers 2330767, 2330769, 2330771, 2331023, 2331108 and 2331024. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre at http://www.ccdc.cam.ac.uk/data_request/cifSource data are provided with this paper.

Code availability

Code source data for all simulations in this work are provided as Supplementary Source Code, with all relevant information for reproduction described in the text and supplementary materials.

References

  1. Prelas, M. A. et al. Nuclear Batteries and Radioisotopes (Springer, 2016).

  2. Prelas, M. A. et al. A review of nuclear batteries. Prog. Nucl. Energ. 75, 117–148 (2014).

    Article  CAS  Google Scholar 

  3. Olsen, L. C., Cabauy, P. & Elkind, B. J. et al. Betavoltaic power sources. Phys. Today 65, 35–38 (2012).

    Article  ADS  CAS  Google Scholar 

  4. Spencer, M. G., & Alam, T. High power direct energy conversion by nuclear batteries. Appl. Phys. Rev. 6, 031305 (2019).

    Article  ADS  Google Scholar 

  5. Liu, B. J. et al. Alpha-voltaic battery on diamond Schottky barrier diode. Diam. Relat. Mater. 87, 35–42 (2018).

    Article  ADS  CAS  Google Scholar 

  6. Weaver, C. L. et al. Radiation resistant PIDECα cell using photon intermediate direct energy conversion and a 210Po source. Appl. Radiat. Isotopes. 132, 110–115 (2018).

    Article  CAS  Google Scholar 

  7. Nullmeyer, B. R. et al. Self-healing effects in a semi-ordered liquid for stable electronic conversion of high-energy radiation. Sci Rep. 8, 12404 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  8. Gao, R. et al. Isoelectronic aluminum-doped gallium nitride alpha-voltaic cell with efficiency exceeding 4.5%. Commun Mater. 4, 50 (2023).

    Article  CAS  Google Scholar 

  9. Sychov, M. et al. Alpha indirect conversion radioisotope power source. Appl. Radiat. Isotopes 66, 173–177 (2008).

    Article  CAS  Google Scholar 

  10. Cress, C. D., Landi, B. J., Raffaelle, R. P. & Wilt, D. M. InGaP alpha voltaic batteries: synthesis, modeling, and radiation tolerance. J. Appl. Phys. 100, 114519 (2006).

    Article  ADS  Google Scholar 

  11. Sperling, J. M. et al. Structural and spectroscopic investigation of two plutonium mellitates. Inorg. Chem. 59, 3085–3090 (2020).

    Article  CAS  PubMed  Google Scholar 

  12. Sperling, J. M. et al. Pronounced pressure dependence of electronic transitions for americium compared to isomorphous neodymium and samarium mellitates. Inorg. Chem. 60, 476–483 (2020).

    Article  PubMed  Google Scholar 

  13. Sperling, J. M. et al. C Synthesis, characterization, and high-pressure studies of a 3D berkelium(III) carboxylate framework material. Chem. Commun. 58, 2200–2203 (2022).

    Article  CAS  Google Scholar 

  14. Galley, S. S. et al. Synthesis and characterization of tris-chelate complexes for understanding f-orbital bonding in later actinides. J. Am. Chem. Soc. 141, 2356–2366 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Marcelo, O. R. et al. Modeling, structural, and spectroscopic studies of lanthanide-organic frameworks. J. Phys. Chem. B 113, 12181–12188 (2009).

    Article  Google Scholar 

  16. Knoll, G. F. Radiation Detection and Measurement (Wiley, 2010).

  17. Tsoulfanidis, N. et al. Measurement and Detection of Radiation (CRC Press, 2021).

  18. Horrocks, D. L. The mechanisms of the liquid scintillation process. Liq. Scintillation 1976, 1–16 (1976).

    Google Scholar 

  19. Gilson, S. E. et al. Unprecedented radiation resistant thorium–binaphthol metal–organic framework. J. Am. Chem. Soc. 142, 13299–13304 (2020).

    Article  CAS  PubMed  Google Scholar 

  20. Zhu, L. et al. Identifying the recognition site for selective trapping of 99TcO4 in a hydrolytically stable and radiation resistant cationic metal–organic framework. J. Am. Chem. Soc. 139, 14873–14876 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. David, P. M. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    Article  Google Scholar 

  22. Yin, J. W. et al. Tuning octahedral tilting by doping to prevent detrimental phase transition and extend carrier lifetime in organometallic perovskites. J. Am. Chem. Soc. 145, 5393–5399 (2023).

    Article  CAS  PubMed  Google Scholar 

  23. Russo, J. et al. A radioluminescent nuclear battery using volumetric configuration: 63Ni solution/ZnS:Cu,Al/InGaP. Appl. Radiat. Isotopes 130, 66–74 (2017).

    Article  CAS  Google Scholar 

  24. Jiang, T. et al. In-depth analysis of the internal energy conversion of nuclear batteries and radiation degradation of key materials. Energy Technol. 8, 2000667 (2020).

    Article  CAS  Google Scholar 

  25. Xu, Z. et al. Enhanced radioluminescent nuclear battery by optimizing structural design of the phosphor layer. Int. J. Energy Res. 42, 1729–1737 (2018).

    Article  CAS  Google Scholar 

  26. Tang, X. et al. Physical parameters of phosphor layers and their effects on the device properties of beta-radioluminescent nuclear batteries. Energy Technol. 3, 1121–1129 (2015).

    Article  CAS  Google Scholar 

  27. Tang, X.-B. et al. Temperature effect of a radioluminescent nuclear battery based on 147Pm/ZnS:Cu/GaAs. Appl. Radiat. Isotopes 97, 118–124 (2015).

    Article  CAS  Google Scholar 

  28. Xu, Z. et al. Designing performance enhanced nuclear battery based on the Cd-109 radioactive source. Int. J. Energy Res. 44, 508–517 (2020).

    Article  CAS  Google Scholar 

  29. Ambadas, B. P. Novel nuclear batteries based on radioluminescence. Energy Technol. 10, 2200285 (2022).

    Article  Google Scholar 

  30. Lei, Y. Demonstration and aging test of a radiation resistant strontium-90 betavoltaic mechanism. Appl. Phys. Lett. 116, 153901 (2020).

    Article  ADS  CAS  Google Scholar 

  31. Dolomanov, O. V. et al. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst. 42, 339–341 (2009).

    Article  ADS  CAS  Google Scholar 

  32. Sheldrick, G. M. SHELXT – integrated space-group and crystal-structure determination. Acta Crystallogr. A 71, 3–8 (2015).

    Article  ADS  Google Scholar 

  33. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  ADS  Google Scholar 

  34. Wrighton, M. S., Ginley, D. S. & Morse, D. L. A technique for the determination of absolute emission quantum yields of powdered samples. J. Phys. Chem. 78, 2229–2232 (1974).

    Article  CAS  Google Scholar 

  35. Wang, J.-X. et al. Heavy-atom engineering of thermally activated delayed fluorophores for high-performance X-ray imaging scintillators. Nat. Photon. 16, 869–875 (2022).

    Article  ADS  CAS  Google Scholar 

  36. Yang, L. et al. Emergence of a lanthanide chalcogenide as an ideal scintillator for a flexible X-ray detector. Angew. Chem. Int. Ed. 62, e202306465 (2023).

    Article  CAS  Google Scholar 

  37. Wang, J.-X. et al. Aggregation-induced fluorescence enhancement for efficient X-ray imaging scintillators and high-speed optical wireless communication. ACS Materials Lett. 9, 1668–1675 (2022).

    Article  Google Scholar 

  38. Agostinelli, S. et al. GEANT4—a simulation toolkit. Nucl. Instrum. Methods Phys. Res. A 506, 250–303 (2003).

    Article  ADS  CAS  Google Scholar 

  39. Allison, J. et al. Recent developments in Geant4. Nucl. Instrum. Methods Phys. Res. A 835, 186–225 (2016).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding support from the National Natural Science Foundation of China (22425061, 22222606, 22206143 and 22227809), the Natural Science Foundation of Jiangsu Province (BK20211546) and the New Cornerstone Science Foundation through the XPLORER PRIZE. We thank R. Wang of Soochow University and Y. Han of the Institute of Nuclear Energy Safety Technology for their advice in improving the paper. We also acknowledge R. Liu, Z. Liu and Y. Wang at Soochow University for their suggestions on photovoltaic cell preparation.

Author information

Authors and Affiliations

Authors

Contributions

S.W., Yaxing Wang and X.O. conceived and supervised the project. K.L. designed the experiment and participated in the entire project. J.W., Y.Z., H.Z. and Y.S. performed the crystal growth and structural determination. J.G., G.S., J.Y. and W.M. carried out the photovoltaic cell fabrication experiment. C.Y., K.Z., Y.Y. and L.S. performed the Monte Carlo simulation. L.C. and Yumin Wang performed the autoluminescent property measurements. K.L. and G.J. determined the electrical characteristics of the nuclear battery. Z.C. aided in the discussion. S.W., Yaxing Wang and K.L. prepared the manuscript. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Yaxing Wang, Xiaoping Ouyang or Shuao Wang.

Ethics declarations

Competing interests

S.W., Yaxing Wang, K.L. and Soochow University have filed a patent on the presenting results. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Eric Lukosi, Robert Surbella and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file includes Supplementary Figs. 1–26 and Supplementary Tables 1–8.

Peer Review file

Supplementary Source Code

Supplementary crystallographic information files with CCDC deposit numbers 2330767, 2330769, 2330771, 2331023, 2331108 and 2331024.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Yan, C., Wang, J. et al. Micronuclear battery based on a coalescent energy transducer. Nature 633, 811–815 (2024). https://doi.org/10.1038/s41586-024-07933-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07933-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing