Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Amino acids and KLHL22 do not activate mTORC1 via DEPDC5 degradation

Matters Arising to this article was published on 08 January 2025

The Original Article was published on 16 May 2018

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Neither amino acid availability nor KLHL22 regulate DEPDC5 protein levels.

Data availability

The data supporting the findings of this study are available from the corresponding authors and the Whitehead Institute (sabadmin@wi.mit.edu) on request.

References

  1. Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183–203 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  2. Chen, J. et al. KLHL22 activates amino-acid-dependent mTORC1 signalling to promote tumorigenesis and ageing. Nature 557, 585–589 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  3. Wang, D. et al. E3 ligase RNF167 and deubiquitinase STAMBPL1 modulate mTOR and cancer progression. Mol. Cell 82, 770–784 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  4. Zhao, T. et al. VWCE modulates amino acid-dependent mTOR signaling and coordinates with KICSTOR to recruit GATOR1 to the lysosomes. Nat. Commun. 14, 8464 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  5. Valenstein, M. L. et al. Structure of the nutrient-sensing hub GATOR2. Nature 607, 610–616 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  6. Rape, M. Ubiquitylation at the crossroads of development and disease. Nat. Rev. Mol. Cell Biol. 19, 59–70 (2018).

    Article  CAS  PubMed  MATH  Google Scholar 

  7. Jin, J., He, J., Li, X., Ni, X. & Jin, X. The role of ubiquitination and deubiquitination in PI3K/AKT/mTOR pathway: a potential target for cancer therapy. Gene 889, 147807 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  8. Jiang, C. et al. Ring domains are essential for GATOR2-dependent mTORC1 activation. Mol. Cell 83, 74–89 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  9. Yan, G. et al. Genome-wide CRISPR screens identify ILF3 as a mediator of mTORC1-dependent amino acid sensing. Nat. Cell Biol. 25, 754–764 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  10. Condon, K. J. et al. Genome-wide CRISPR screens reveal multitiered mechanisms through which mTORC1 senses mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 118, e2022120118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Long, L. et al. CRISPR screens unveil signal hubs for nutrient licensing of T cell immunity. Nature 600, 308–313 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  12. Yuskaitis, C. J. et al. DEPDC5-dependent mTORC1 signaling mechanisms are critical for the anti-seizure effects of acute fasting. Cell Rep. 40, 111278 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  13. Boussif, O. et al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA 92, 7297–7301 (1995).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  14. Wolfson, R. L. et al. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1. Nature 543, 438–442 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  15. Richardson, C. D., Ray, G. J., DeWitt, M. A., Curie, G. L. & Corn, J. E. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34, 339–344 (2016).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all of the members of the Sabatini and Chivukula Laboratories for insights. This work was supported by grants to D.M.S. from the NIH (R01 CA103866, R01 CA129105 and R01 AI47389), the Department of Defense (W81XWH-21-1-0260 and TS200035), the Lustgarten Foundation, the Leo Foundation, the Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Pershing Square Philanthropies, fellowship support to M.L.V. (T32 GM007753, F30 CA228229, Koch Institute for Integrative Cancer Research at MIT), fellowship support to J.F.K. (T32 GM007753, F30 CA236179), support from the NIH to M.S.T. (T32CA009216, 1K08DK129824) and grants to R.R.C. (Burroughs Wellcome Fund, Ellison Foundation, Smith Family Foundation).

Author information

Authors and Affiliations

Authors

Contributions

M.L.V., P.V.L. and D.M.S. formulated the research plan. J.F.K., K.J.C., A.P., D.G.F. and M.S.T. generated endogenously tagged cell lines. M.L.V. generated KLHL22-knockout cells with assistance from Y.X. and R.R.C. M.L.V. and P.V.L. performed the experiments and interpreted results. M.L.V. wrote the manuscript. All of the authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Max L. Valenstein.

Ethics declarations

Competing interests

D.M.S. is a shareholder of Navitor Pharmaceuticals, which is targeting for therapeutic benefit the amino-acid-sensing pathway upstream of mTORC1.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valenstein, M.L., Lalgudi, P.V., Kedir, J.F. et al. Amino acids and KLHL22 do not activate mTORC1 via DEPDC5 degradation. Nature 637, E11–E14 (2025). https://doi.org/10.1038/s41586-024-07974-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07974-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing