Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrocatalytic reductive deuteration of arenes and heteroarenes

Abstract

The incorporation of deuterium in organic molecules has widespread applications in medicinal chemistry and materials science1,2. For example, the deuterated drugs austedo3, donafenib4 and sotyktu5 have been recently approved. There are various methods for the synthesis of deuterated compounds with high deuterium incorporation6. However, the reductive deuteration of aromatic hydrocarbons—ubiquitous chemical feedstocks—to saturated cyclic compounds has rarely been achieved. Here we describe a scalable and general electrocatalytic method for the reductive deuteration and deuterodefluorination of (hetero)arenes using a prepared nitrogen-doped electrode and deuterium oxide (D2O), giving perdeuterated and saturated deuterocarbon products. This protocol has been successfully applied to the synthesis of 13 highly deuterated drug molecules. Mechanistic investigations suggest that the ruthenium–deuterium species, generated by electrolysis of D2O in the presence of a nitrogen-doped ruthenium electrode, are key intermediates that directly reduce aromatic compounds. This quick and cost-effective methodology for the preparation of highly deuterium-labelled saturated (hetero)cyclic compounds could be applied in drug development and metabolism studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategy for perdeuterated cyclic compounds and saturated deuterocarbons.
Fig. 2: Reductive deuteration of arenes.
Fig. 3: Reductive deuteration of heteroarenes.
Fig. 4: Synthetic applications and gram-scale synthesis.

Similar content being viewed by others

Data availability

All data are available in the main text or in Supplementary Information.

References

  1. Pirali, T., Serafini, M., Cargnin, S. & Genazzani, A. A. Applications of deuterium in medicinal chemistry. J. Med. Chem. 62, 5276–5297 (2019).

    CAS  Google Scholar 

  2. Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).

    CAS  Google Scholar 

  3. Schmidt, C. First deuterated drug approved. Nat. Biotechnol. 35, 493–494 (2017).

    CAS  Google Scholar 

  4. Keam, S. J. & Duggan, S. Donafenib: first approval. Drugs 81, 1915–1920 (2021).

    CAS  Google Scholar 

  5. Mullard, A. First de novo deuterated drug poised for approval. Nat. Rev. Drug Discov. 21, 623–625 (2022).

    CAS  Google Scholar 

  6. Kopf, S. et al. Recent developments for the deuterium and tritium labeling of organic molecules. Chem. Rev. 122, 6634–6718 (2022).

    CAS  Google Scholar 

  7. Simmons, E. M. & Hartwig, J. F. On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 51, 3066–3072 (2012).

    CAS  Google Scholar 

  8. Tullo, A. H. Your next TV could contain uncommon isotopes. CEN Glob. Enterp. 100, 21–22 (2022).

    Google Scholar 

  9. Jansen-van Vuuren, R. D., Jedlovcnik, L., Kosmrlj, J., Massey, T. E. & Derdau, V. Deuterated drugs and biomarkers in the COVID-19 pandemic. ACS Omega 7, 41840–41858 (2022).

    CAS  PubMed Central  Google Scholar 

  10. Shi, L. et al. Optical imaging of metabolic dynamics in animals. Nat. Commun. 9, 2995 (2018).

    ADS  PubMed Central  Google Scholar 

  11. De Feyter, H. M. et al. Deuterium metabolic imaging (DMI) for MRI-based 3D mapping of metabolism in vivo. Sci. Adv. 4, eaat7314 (2018).

    ADS  PubMed Central  Google Scholar 

  12. Gant, T. G. Using deuterium in drug discovery: leaving the label in the drug. J. Med. Chem. 57, 3595–3611 (2014).

    CAS  Google Scholar 

  13. Zhang, M., Yuan, X. A., Zhu, C. & Xie, J. Deoxygenative deuteration of carboxylic acids with D2O. Angew. Chem. Int. Ed. 58, 312–316 (2019).

    CAS  Google Scholar 

  14. Farizyan, M., Mondal, A., Mal, S., Deufel, F. & van Gemmeren, M. Palladium-catalyzed nondirected late-stage C–H deuteration of arenes. J. Am. Chem. Soc. 143, 16370–16376 (2021).

    CAS  PubMed Central  Google Scholar 

  15. Pieters, G. et al. Regioselective and stereospecific deuteration of bioactive aza compounds by the use of ruthenium nanoparticles. Angew. Chem. Int. Ed. 53, 230–234 (2014).

    CAS  Google Scholar 

  16. Atzrodt, J., Derdau, V., Fey, T. & Zimmermann, J. The renaissance of H/D exchange. Angew. Chem. Int. Ed. 46, 7744–7765 (2007).

    CAS  Google Scholar 

  17. Yu, R. P., Hesk, D., Rivera, N., Pelczer, I. & Chirik, P. J. Iron-catalysed tritiation of pharmaceuticals. Nature 529, 195–199 (2016).

    ADS  Google Scholar 

  18. Loh, Y. Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    ADS  CAS  PubMed Central  Google Scholar 

  19. Li, W. et al. Scalable and selective deuteration of (hetero)arenes. Nat. Chem. 14, 334–341 (2022).

    CAS  PubMed Central  Google Scholar 

  20. He, T., Klare, H. F. T. & Oestreich, M. Perdeuteration of deactivated aryl halides by H/D exchange under superelectrophile catalysis. J. Am. Chem. Soc. 144, 4734–4738 (2022).

    CAS  Google Scholar 

  21. Kerr, W. J. et al. Site-selective deuteration of N-heterocycles via iridium-catalyzed hydrogen isotope exchange. ACS Catal. 7, 7182–7186 (2017).

    CAS  Google Scholar 

  22. Nilsson, G. N. & Kerr, W. J. The development and use of novel iridium complexes as catalysts for ortho-directed hydrogen isotope exchange reactions. J. Label. Compd. Radiopharm. 53, 662–667 (2010).

    CAS  Google Scholar 

  23. Czeskis, B. et al. Deuterated active pharmaceutical ingredients: a science-based proposal for synthesis, analysis, and control. Part 1: framing the problem. J. Label. Compd. Radiopharm. 62, 690–694 (2019).

    CAS  Google Scholar 

  24. Qiu, X. et al. Cleaving arene rings for acyclic alkenylnitrile synthesis. Nature 597, 64–69 (2021).

    ADS  CAS  Google Scholar 

  25. Roche, S. P. & Porco, J. A. Jr Dearomatization strategies in the synthesis of complex natural products. Angew. Chem. Int. Ed. 50, 4068–4093 (2011).

    CAS  Google Scholar 

  26. Zhuo, C. X., Zhang, W. & You, S. L. Catalytic asymmetric dearomatization reactions. Angew. Chem. Int. Ed. 51, 12662–12686 (2012).

    Google Scholar 

  27. Nairoukh, Z., Wollenburg, M., Schlepphorst, C., Bergander, K. & Glorius, F. The formation of all-cis-(multi)fluorinated piperidines by a dearomatization-hydrogenation process. Nat. Chem. 11, 264–270 (2019).

    CAS  PubMed Central  Google Scholar 

  28. The Njarðarson Group Top 200 Small Molecule Pharmaceuticals by Retail Sales in 2021 (Univ. Arizona, 2021); https://bpb-us-e2.wpmucdn.com/sites.arizona.edu/dist/9/130/files/2024/08/Top-200-Small-Molecules-2021V3.pdf.

  29. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014).

    CAS  Google Scholar 

  30. Joannou, M. V., Bezdek, M. J. & Chirik, P. J. Pyridine(diimine) molybdenum-catalyzed hydrogenation of arenes and hindered olefins: insights into precatalyst activation and deactivation pathways. ACS Catal. 8, 5276–5285 (2018).

    CAS  Google Scholar 

  31. Smith, J. A. et al. Preparation of cyclohexene isotopologues and stereoisotopomers from benzene. Nature 581, 288–293 (2020).

    ADS  CAS  PubMed Central  Google Scholar 

  32. Novaes, L. F. T. et al. Electrocatalysis as an enabling technology for organic synthesis. Chem. Soc. Rev. 50, 7941–8002 (2021).

    CAS  PubMed Central  Google Scholar 

  33. Horn, E. J. et al. Scalable and sustainable electrochemical allylic C–H oxidation. Nature 533, 77–81 (2016).

    ADS  CAS  PubMed Central  Google Scholar 

  34. Badalyan, A. & Stahl, S. S. Cooperative electrocatalytic alcohol oxidation with electron-proton-transfer mediators. Nature 535, 406–410 (2016).

    ADS  CAS  Google Scholar 

  35. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    CAS  PubMed Central  Google Scholar 

  36. Zeng, L. et al. Asymmetric-waveform alternating current-promoted silver catalysis for C–H phosphorylation. Nat. Synth. 2, 172–181 (2023).

    ADS  Google Scholar 

  37. Francke, R. & Little, R. D. Redox catalysis in organic electrosynthesis: basic principles and recent developments. Chem. Soc. Rev. 43, 2492–2521 (2014).

    CAS  Google Scholar 

  38. Li, R. et al. One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to alpha,beta-deuterio aryl ethylamines. Nat. Commun. 13, 5951 (2022).

    ADS  PubMed Central  Google Scholar 

  39. Kurimoto, A., Sherbo, R. S., Cao, Y., Loo, N. W. X. & Berlinguette, C. P. Electrolytic deuteration of unsaturated bonds without using D2. Nat. Catal. 3, 719–726 (2020).

    CAS  Google Scholar 

  40. Zhu, J., Hu, L., Zhao, P., Lee, L. Y. S. & Wong, K.-Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 120, 851–918 (2020).

    CAS  Google Scholar 

  41. Yoshida, J., Kataoka, K., Horcajada, R. & Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 108, 2265–2299 (2008).

    CAS  Google Scholar 

  42. Sajiki, H., Sawama, Y. & Monguchi, Y. Efficient H–D exchange reactions using heterogeneous platinum-group metal on carbon-H2–D2O system. Synlett 23, 959–972 (2012).

    Google Scholar 

  43. Wiesenfeldt, M. P., Nairoukh, Z., Li, W. & Glorius, F. Hydrogenation of fluoroarenes: direct access to all-cis-(multi)fluorinated cycloalkanes. Science 357, 908–912 (2017).

    ADS  CAS  Google Scholar 

  44. Nishi, T. et al. Studies on 2-oxoquinoline derivatives as blood platelet aggregation inhibitors. II. 6-[3-(1-Cyclohexyl-5-tetrazolyl)propoxy]-1,2-dihydro-2-oxoquinoline and related compounds. Chem. Pharm. Bull. 31, 1151–1157 (1983).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the Center for Electron Microscopy at Wuhan University for their support of the transmission electron microscope work. We acknowledge the support from the National Key R&D Program of China (number 2021YFA1500100, A.L.), the National Natural Science Foundation of China (22031008, A.L.; 212200007, W.L.) and the Science Foundation of Wuhan (2020010601012192, A.L.). We thank S. Chen (WHU), Z. Wei (WHU), G. Wang (WHU) and Y. Xi (NUS) for discussions; X. Zhou from the Core Research Facilities of CCMS (WHU) for assistance with ssNMR analysis; and beamline BL11B and BL14W1 of Shanghai Synchrotron Radiation Facility (SSRF) for providing the beam time.

Author information

Authors and Affiliations

Contributions

A.L., W.L., F.B. and Y.D. conceived and designed the project. F.B., Y.D. and J.X. developed and prepared the catalysts, performed all catalytic experiments and analysed the data. F.B. and Y.L. were responsible for the TEM experiments. F.B. was responsible for the X-ray diffraction experiments. F.B. and Y.L. were responsible for the X-ray photoelectron spectroscopy experiments. D.Y. was responsible for the XAFS experiments. F.B., W.L. and A.L. co-wrote the paper.

Corresponding authors

Correspondence to Wu Li or Aiwen Lei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Possible mechanisms.

Pathway 1 supported by our experimental data and reported data, pathway 2 involving D2 as an intermediate.

Extended Data Fig. 2 Reductive deuteration of arenes.

Standard conditions: Undivided cell, Al (+), Ru-N/CF (−) (Ru 3 mol%), a 0.4 mmol, nBu4NBr 0.4 mmol, tBuOD/D2O = 2.5/2.5 mL, constant current, 10 mA, room temperature, argon atmosphere, 8 h to 48 h, isolated yield. a0.2 mmol a was added. bReaction conditions: divided cell, anode cell, CF (+), NaF 0.8 mmol, D2O 10.0 mL; cathode cell, Ru-N/CF (−), a 0.4 mmol, nBu4NBr 0.8 mmol, tBuOD/D2O/HFIP = 5.0/5.0/0.5 mL, constant current, I = 10 mA, room temperature, argon atmosphere, 8 h to 16 h. cRu-N/CF-2 (Ru 5 mol%) was used as cathode.

Extended Data Fig. 3 Reductive deuteration of D-labelled arenes.

Standard conditions: Undivided cell, Al (+), Ru-N/CF (−) (Ru 3 mol%), c 0.4 mmol, nBu4NBr 0.4 mmol, tBuOD/D2O = 2.5/2.5 mL, constant current, 10 mA, room temperature, argon atmosphere, 8 h to 20 h, isolated yield. aReaction conditions: Divided cell, anode cell, CF (+), nBu4NCl 0.8 mmol, D2O 10.0 mL; cathode cell, Ru-N/CF (−), c 0.4 mmol, nBu4NCl 0.8 mmol, tBuOD/D2O = 5.0/5.0 mL, constant current, I = 10 mA, 14 h, room temperature, argon atmosphere.

Extended Data Fig. 4 Deuterodehalogenation.

Standard conditions: Undivided cell, Al (+), Ru-N/CF (−) (Ru 3 mol%), e 0.4 mmol, nBu4NBr 0.8 mmol, tBuOD/D2O = 5.0/5.0 mL, constant current, 10 mA, room temperature, argon atmosphere, 20 h to 72 h, isolated yield. anBu4NBr 0.4 mmol, tBuOD/D2O = 2.5/2.5 mL, t = 8 h to 20 h. bThe position of halogen in the substrates with the number less than five. cRu-N/CF-2 (Ru 5 mol%) was used. dD-incorporation (and yield) was determined by product benzoylation. ePentafluorophenylacetonitrile was used as substrate.

Extended Data Fig. 5 Synthetic applications.

Synthesis of piperazine-d8-containing pharmaceuticals from piperazine-d8 hydrochloride.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–16 including Supplementary Figs. 1–28, Data and References—see Contents for details.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bu, F., Deng, Y., Xu, J. et al. Electrocatalytic reductive deuteration of arenes and heteroarenes. Nature 634, 592–599 (2024). https://doi.org/10.1038/s41586-024-07989-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07989-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing