Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Perovskite/silicon tandem solar cells with bilayer interface passivation 

Abstract

Two-terminal monolithic perovskite/silicon tandem solar cells demonstrate huge advantages in power conversion efficiency compared with their respective single-junction counterparts1,2. However, suppressing interfacial recombination at the wide-bandgap perovskite/electron transport layer interface, without compromising its superior charge transport performance, remains a substantial challenge for perovskite/silicon tandem cells3,4. By exploiting the nanoscale discretely distributed lithium fluoride ultrathin layer followed by an additional deposition of diammonium diiodide molecule, we have devised a bilayer-intertwined passivation strategy that combines efficient electron extraction with further suppression of non-radiative recombination. We constructed perovskite/silicon tandem devices on a double-textured Czochralski-based silicon heterojunction cell, which featured a mildly textured front surface and a heavily textured rear surface, leading to simultaneously enhanced photocurrent and uncompromised rear passivation. The resulting perovskite/silicon tandem achieved an independently certified stabilized power conversion efficiency of 33.89%, accompanied by an impressive fill factor of 83.0% and an open-circuit voltage of nearly 1.97 V. To the best of our knowledge, this represents the first reported certified efficiency of a two-junction tandem solar cell exceeding the single-junction Shockley–Queisser limit of 33.7%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PL spectra and performance loss analysis.
Fig. 2: Interface interaction and electronic properties.
Fig. 3: DFT calculations.
Fig. 4: Photovoltaic performances and stability tests.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Aydin, E. et al. Pathways toward commercial perovskite/silicon tandem photovoltaics. Science 383, eadh3849 (2024).

    Article  CAS  PubMed  Google Scholar 

  2. Shi, Y., Berry, J. J. & Zhang, F. Perovskite/silicon tandem solar cells: insights and outlooks. ACS Energy Lett. 9, 1305–1330 (2024).

    Article  CAS  Google Scholar 

  3. Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Chen, H. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 384, 189–193 (2024).

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Wu, H. et al. Silicon heterojunction back contact solar cells by laser patterning. Nature https://doi.org/10.1038/s41586-024-08110-8 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  6. NREL. Best research-cell efficiency chart. Photovoltaic Research; https://www.nrel.gov/pv/cell-efficiency.html (accessed 02 September 2024).

  7. Niewelt, T. et al. Reassessment of the intrinsic bulk recombination in crystalline silicon. Sol. Energy Mater. Sol. Cells 235, 111467 (2022).

    Article  CAS  Google Scholar 

  8. Long, W. et al. On the limiting efficiency for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 231, 111291 (2021).

    Article  CAS  Google Scholar 

  9. Liu, W. et al. Light-induced activation of boron doping in hydrogenated amorphous silicon for over 25% efficiency silicon solar cells. Nat. Energy 7, 427–437 (2022).

    Article  CAS  ADS  Google Scholar 

  10. Aydin, E. et al. Enhanced optoelectronic coupling for perovskite/silicon tandem solar cells. Nature 623, 732–738 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  11. Chin, X. Y. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 381, 59–63 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  12. Mariotti, S. et al. Interface engineering for high-performance, triple-halide perovskite-silicon tandem solar cells. Science 381, 63–69 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  13. Aydin, E. et al. Ligand-bridged charge extraction and enhanced quantum efficiency enable efficient n–i–p perovskite/silicon tandem solar cells. Energy Environ. Sci. 14, 4377–4390 (2021).

    Article  CAS  Google Scholar 

  14. Xu, L. et al. Monolithic perovskite/silicon tandem photovoltaics with minimized cell-to-module losses by refractive-index engineering. ACS Energy Lett. 7, 2370–2372 (2022).

    Article  CAS  Google Scholar 

  15. Mazzarella, L. et al. Infrared light management using a nanocrystalline silicon oxide interlayer in monolithic perovskite/silicon heterojunction tandem solar cells with efficiency above 25%. Adv. Energy Mater. 9, 1803241 (2019).

    Article  Google Scholar 

  16. Hou, Y. et al. Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science 367, 1135–1140 (2020).

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Chen, B. et al. Blade-coated perovskites on textured silicon for 26%-efficient monolithic perovskite/silicon tandem solar cells. Joule 4, 850–864 (2020).

    Article  CAS  Google Scholar 

  18. Liu, J. et al. 28.2%-efficient, outdoor-stable perovskite/silicon tandem solar cell. Joule 5, 3169–3186 (2021).

    Article  CAS  Google Scholar 

  19. Stolterfoht, M. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 12, 2778–2788 (2019).

    Article  CAS  Google Scholar 

  20. Wang, J. et al. Reducing surface recombination velocities at the electrical contacts will improve perovskite photovoltaics. ACS Energy Lett. 4, 222–227 (2018).

    Article  Google Scholar 

  21. Caprioglio, P. et al. Open-circuit and short-circuit loss management in wide-gap perovskite p-i-n solar cells. Nat. Commun. 14, 932 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  22. Stolterfoht, M. et al. Visualization and suppression of interfacial recombination for high-efficiency large-area pin perovskite solar cells. Nat. Energy 3, 847–854 (2018).

    Article  CAS  ADS  Google Scholar 

  23. Liu, J. et al. Efficient and stable perovskite-silicon tandem solar cells through contact displacement by MgFx. Science 377, 302–306 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Peña-Camargo, F. et al. Halide segregation versus interfacial recombination in bromide-rich wide-gap perovskite solar cells. ACS Energy Lett. 5, 2728–2736 (2020).

    Article  Google Scholar 

  25. Li, Z. et al. Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376, 416–420 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  26. Li, F. et al. Regulating surface termination for efficient inverted perovskite solar cells with greater than 23% efficiency. J. Am. Chem. Soc. 142, 20134–20142 (2020).

    Article  CAS  PubMed  Google Scholar 

  27. Chen, H. et al. Regulating surface potential maximizes voltage in all-perovskite tandems. Nature 613, 676–681 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Zhang, F. et al. Metastable Dion-Jacobson 2D structure enables efficient and stable perovskite solar cells. Science 375, 71–76 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  29. Chen, H. et al. Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells. Nat. Photon. 16, 352–358 (2022).

    Article  CAS  ADS  Google Scholar 

  30. Park, S. M. et al. Engineering ligand reactivity enables high-temperature operation of stable perovskite solar cells. Science 381, 209–215 (2023).

    Article  CAS  PubMed  ADS  Google Scholar 

  31. Azmi, R. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 376, 73–77 (2022).

    Article  CAS  PubMed  ADS  Google Scholar 

  32. Menzel, D. et al. Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 12, 2201109 (2022).

  33. Richter, A. et al. Design rules for high-efficiency both-sides-contacted silicon solar cells with balanced charge carrier transport and recombination losses. Nat. Energy 6, 429–438 (2021).

    Article  CAS  ADS  Google Scholar 

  34. Liu, W. et al. Flexible solar cells based on foldable silicon wafers with blunted edges. Nature 617, 717–723 (2023).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  35. Peng, J. et al. Nanoscale localized contacts for high fill factors in polymer-passivated perovskite solar cells. Science 371, 390–395 (2021).

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Adhyaksa, G. W. P., Johlin, E. & Garnett, E. C. Nanoscale back contact perovskite solar cell design for improved tandem efficiency. Nano Lett. 17, 5206–5212 (2017).

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  37. Mao, K. et al. Unveiling and balancing the passivation‐transport trade‐off in perovskite solar cells with double‐side patterned insulator contacts. Adv. Energy Mater. 13, 2302132 (2023).

  38. Guillemoles, J.-F., Kirchartz, T., Cahen, D. & Rau, U. Guide for the perplexed to the Shockley–Queisser model for solar cells. Nat. Photon. 13, 501–505 (2019).

    Article  CAS  ADS  Google Scholar 

  39. Cai, M. et al. Control of electrical potential distribution for high-performance perovskite solar cells. Joule 2, 296–306 (2018).

    Article  CAS  Google Scholar 

  40. Jiang, C.-S. et al. Carrier separation and transport in perovskite solar cells studied by nanometre-scale profiling of electrical potential. Nat. Commun. 6, 8397 (2015).

  41. Turkay, D. et al. Synergetic substrate and additive engineering for over 30%-efficient perovskite-Si tandem solar cells. Joule https://doi.org/10.1016/j.joule.2024.04.015 (2024).

    Article  Google Scholar 

  42. Juarez-Perez, E. J. et al. Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability. J. Mater. Chem. A 6, 9604–9612 (2018).

    Article  CAS  Google Scholar 

  43. Rühle, S. Tabulated values of the Shockley–Queisser limit for single junction solar cells. Sol. Energy 130, 139–147 (2016).

    Article  ADS  Google Scholar 

  44. Grimme, S., Hansen, A., Brandenburg, J. G. & Bannwarth, C. Dispersion-corrected mean-field electronic structure methods. Chem. Rev. 116, 5105–5154 (2016).

Download references

Acknowledgements

This work was supported by LONGi Central R&D Institute, the National Key Research and Development Program of China (no. 2023YFB4202505); Two-chain Integration Key Program of Shaanxi Province (no. 2023-LL-QY-16); the National Natural Science Foundation of China (no. 51821002); the Collaborative Innovation Center of Suzhou Nano Science & Technology, Key Basic Research Program of Jiangsu Province (no. BK20243031); the Soochow University (nos. NH16000124 and SR16000123); the Hong Kong Polytechnic University (no. P0042930); and the Research Grants Council of the Hong Kong Special Administrative Region, China (nos. PolyU 25300823 and PolyU 15300724).

Author information

Authors and Affiliations

Authors

Contributions

Jiang Liu, Y.H., L.D. and H.Z. conceived this work and designed the experiment. Jiang Liu, H.Z. and Qiaoyan Li acquired the PL spectra. J. Yu conducted the ToF-SIMS measurements. T.W.L. and J. Yin conducted the DFT calculations. Minghui Li and C.X. performed the KPFM measurements. Jiang Liu, Y.H. and L.D. designed the texture structure and contributed to its development. Y.H., L.D., H.Z., L.J., Y.Q., X.G, F.Z, Qibo Li, Y.Y., S.Z., X.W., Jie Liu, T.L., Y.G., Y.W. and X.D. fabricated and optimized the perovskite/silicon tandem solar cells. H.C., P.L., T.Z., M.Y., X.R., F.P., S.Y., M.Q., P.X., Z.Z. and Menglei Li fabricated and optimized the silicon bottom cells. P.G. conducted the XPS and UPS measurements. Jiang Liu and Y.H. wrote the draft of the manuscript. Jiang Liu, Y.H., L.D., B.H. and X.X. reviewed and polished the manuscript. C.X., P.X., H.Y., J. Yin, X.Z., Z.L., B.H. and X.X. supervised the project and secured the funding.

Corresponding authors

Correspondence to Jiang Liu, Ping Xiao, Jun Yin, Xiaohong Zhang, Zhenguo Li, Bo He or Xixiang Xu.

Ethics declarations

Competing interests

A patent application (No. 202310730135.2, filed in China) that covers the asymmetrically sized texturing used in this work has been submitted.

Peer review

Peer review information

Nature thanks Marko Mladenovic and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–4, Figs. 1–31 and references.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., He, Y., Ding, L. et al. Perovskite/silicon tandem solar cells with bilayer interface passivation . Nature 635, 596–603 (2024). https://doi.org/10.1038/s41586-024-07997-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07997-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing