Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Terrestrial photosynthesis inferred from plant carbonyl sulfide uptake

Abstract

Terrestrial photosynthesis, or gross primary production (GPP), is the largest carbon flux in the biosphere, but its global magnitude and spatiotemporal dynamics remain uncertain1. The global annual mean GPP is historically thought to be around 120 PgC yr−1 (refs. 2,3,4,5,6), which is about 30–50 PgC yr−1 lower than GPP inferred from the oxygen-18 (18O) isotope7 and soil respiration8. This disparity is a source of uncertainty in predicting climate–carbon cycle feedbacks9,10. Here we infer GPP from carbonyl sulfide, an innovative tracer for CO2 diffusion from ambient air to leaf chloroplasts through stomata and mesophyll layers. We demonstrate that explicitly representing mesophyll diffusion is important for accurately quantifying the spatiotemporal dynamics of carbonyl sulfide uptake by plants. From the estimate of carbonyl sulfide uptake by plants, we infer a global contemporary GPP of 157 (±8.5) PgC yr−1, which is consistent with estimates from 18O (150–175 PgC yr−1) and soil respiration (\({149}_{-23}^{+29}\) PgC yr−1), but with an improved confidence level. Our global GPP is higher than satellite optical observation-driven estimates (120–140 PgC yr–1) that are used for Earth system model benchmarking. This difference predominantly occurs in the pan-tropical rainforests and is corroborated by ground measurements11, suggesting a more productive tropics than satellite-based GPP products indicated. As GPP is a primary determinant of terrestrial carbon sinks and may shape climate trajectories9,10, our findings lay a physiological foundation on which the understanding and prediction of carbon–climate feedbacks can be advanced.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparison of simulated terrestrial ecosystem OCS fluxes with site observations.
Fig. 2: Comparison of FOCS (2000–2010 average) between gmes-implicit and gmes-explicit simulations across PFTs.
Fig. 3: Comparison of GPP inferred from CLM5 OCS simulation with GPP simulated by CLM5 implemented with the default FvCB model.
Fig. 4: Intercomparison of GPP estimates from existing approaches.

Similar content being viewed by others

Data availability

The CLM5 simulation output related to this study is available at https://doi.org/10.7298/mxg9-7176.

References

  1. Anav, A. et al. Spatiotemporal patterns of terrestrial gross primary production: a review. Rev. Geophys. 53, 785–818 (2015).

    Article  ADS  Google Scholar 

  2. Trabalka, J. R. Atmospheric Carbon Dioxide and the Global Carbon Cycle (US Department of Energy, 1986).

  3. Bolin, B. & Fung, I. The Carbon Cycle Revisited Vol. 3 (University Corp. for Atmospheric Research, 1992).

  4. Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).

    Article  ADS  CAS  Google Scholar 

  6. Ryu, Y., Berry, J. A. & Baldocchi, D. D. What is global photosynthesis? History, uncertainties and opportunities. Remote Sens. Environ. 223, 95–114 (2019).

    Article  ADS  Google Scholar 

  7. Welp, L. R. et al. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño. Nature 477, 579–582 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Jian, J. et al. Historically inconsistent productivity and respiration fluxes in the global terrestrial carbon cycle. Nat. Commun. 13, 1733 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  ADS  Google Scholar 

  10. Campbell, J. E. et al. Large historical growth in global terrestrial gross primary production. Nature 544, 84–87 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Zhang-Zheng, H. et al. Contrasting carbon cycle along tropical forest aridity gradients in West Africa and Amazonia. Nat. Commun. 15, 3158 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Canadell, J. G. et al. In Climate Change 2021: The Physical Science Basis (ed. Brovkin, V.) Ch. 5 (Cambridge Univ. Press, 2021).

  13. Chen, M. et al. Regional contribution to variability and trends of global gross primary productivity. Environ. Res. Lett. 12, 105005 (2017).

    Article  ADS  Google Scholar 

  14. Hilton, T. W. et al. Peak growing season gross uptake of carbon in North America is largest in the Midwest USA. Nat. Clim. Change 7, 450–454 (2017).

    Article  ADS  CAS  Google Scholar 

  15. Friedlingstein, P. et al. Global carbon budget 2023. Earth Syst. Sci. Data 15, 5301–5369 (2023).

    Article  Google Scholar 

  16. Berry, J. et al. A coupled model of the global cycles of carbonyl sulfide and CO2: a possible new window on the carbon cycle. J. Geophys. Res. Biogeosci. 118, 842–852 (2013).

    Article  CAS  Google Scholar 

  17. Whelan, M. E. et al. Reviews and syntheses: carbonyl sulfide as a multi-scale tracer for carbon and water cycles. Biogeosciences 15, 3625–3657 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Wehr, R. et al. Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake. Biogeosciences 14, 389–401 (2017).

    Article  ADS  CAS  Google Scholar 

  19. Medlyn, B. E. et al. Reconciling the optimal and empirical approaches to modelling stomatal conductance. Glob. Chang. Biol. 17, 2134–2144 (2011).

    Article  ADS  Google Scholar 

  20. Knauer, J. et al. Mesophyll conductance in land surface models: effects on photosynthesis and transpiration. Plant J. 101, 858–873 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. Sun, Y. et al. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. Plant Cell Environ. 37, 978–994 (2014).

    Article  PubMed  Google Scholar 

  22. Jähne, B., Heinz, G. & Dietrich, W. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92, 10767–10776 (1987).

    Article  ADS  Google Scholar 

  23. Ulshöfer, V. S., Flock, O. R., Uher, G. & Andreae, M. O. Photochemical production and air-sea exchange of carbonyl sulfide in the eastern Mediterranean Sea. Mar. Chem. 53, 25–39 (1996).

    Article  Google Scholar 

  24. Sun, Y. et al. Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc. Natl Acad. Sci. USA 111, 15774–15779 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kooijmans, L. M. J. et al. Evaluation of carbonyl sulfide biosphere exchange in the Simple Biosphere Model (SiB4). Biogeosciences 18, 6547–6565 (2021).

    Article  ADS  CAS  Google Scholar 

  26. Sun, W., Maseyk, K., Lett, C. & Seibt, U. Stomatal control of leaf fluxes of carbonyl sulfide and CO2 in a Typha freshwater marsh. Biogeosciences 15, 3277–3291 (2018).

    Article  ADS  CAS  Google Scholar 

  27. Maseyk, K. et al. Sources and sinks of carbonyl sulfide in an agricultural field in the Southern Great Plains. Proc. Natl Acad. Sci. USA 111, 9064–9069 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kooijmans, L. M. J. et al. Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest. Atmos. Chem. Phys. 17, 11453–11465 (2017).

    Article  ADS  CAS  Google Scholar 

  29. Stimler, K., Berry, J. A., Montzka, S. A. & Yakir, D. Association between carbonyl sulfide uptake and 18D during gas exchange in C3 and C4 leaves. Plant Physiol. 157, 509–517 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Terashima, I., Hanba, Y. T., Tazoe, Y., Vyas, P. & Yano, S. Irradiance and phenotype: comparative eco-development of sun and shade leaves in relation to photosynthetic CO2 diffusion. J. Exp. Bot. 57, 343–354 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Niinemets, U., Díaz-Espejo, A., Flexas, J., Galmés, J. & Warren, C. R. Role of mesophyll diffusion conductance in constraining potential photosynthetic productivity in the field. J. Exp. Bot. 60, 2249–2270 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Niinemets, U., Wright, I. J. & Evans, J. R. Leaf mesophyll diffusion conductance in 35 Australian sclerophylls covering a broad range of foliage structural and physiological variation. J. Exp. Bot. 60, 2433–2449 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Bernacchi, C. J., Portis, A. R., Nakano, H., von Caemmerer, S. & Long, S. P. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol. 130, 1992–1998 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cano, F. J., López, R. & Warren, C. R. Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species. Plant Cell Environ. 37, 2470–2490 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Dillaway, D. N. & Kruger, E. L. Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect. Plant Cell Environ. 33, 888–899 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Campbell, J. E. et al. Photosynthetic control of atmospheric carbonyl sulfide during the growing season. Science 322, 1085–1088 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Stimler, K., Montzka, S. A., Berry, J. A., Rudich, Y. & Yakir, D. Relationships between carbonyl sulfide (COS) and CO2 during leaf gas exchange. New Phytol. 186, 869–878 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Kooijmans, L. M. J. et al. Influences of light and humidity on carbonyl sulfide-based estimates of photosynthesis. Proc. Natl Acad. Sci. USA 116, 2470–2475 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Stimler, K., Berry, J. A. & Yakir, D. Effects of carbonyl sulfide and carbonic anhydrase on stomatal conductance. Plant Physiol. 158, 524–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  40. Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, G00J07 (2011).

  41. Joiner, J. et al. Estimation of terrestrial global gross primary production (GPP) with satellite data-driven models and eddy covariance flux data. Remote Sens. 10, 1346 (2018).

    Article  ADS  Google Scholar 

  42. Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sens. 11, 2563 (2019).

    Article  ADS  Google Scholar 

  43. Chen, J. M. et al. Effects of foliage clumping on the estimation of global terrestrial gross primary productivity. Glob. Biogeochem. Cycles 26, GB1019 (2012).

  44. Jiang, C. & Ryu, Y. Multi-scale evaluation of global gross primary productivity and evapotranspiration products derived from Breathing Earth System Simulator (BESS). Remote Sens. Environ. 186, 528–547 (2016).

    Article  ADS  Google Scholar 

  45. Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).

    Article  Google Scholar 

  46. Li, X. & Xiao, J. A global, 0.05-degree product of solar-induced chlorophyll fluorescence derived from OCO-2, MODIS, and reanalysis data. Remote Sens. 11, 517 (2019).

    Article  ADS  Google Scholar 

  47. Malhi, Y. et al. The Global Ecosystems Monitoring network: monitoring ecosystem productivity and carbon cycling across the tropics. Biol. Conserv. 253, 108889 (2021).

    Article  Google Scholar 

  48. Restrepo-Coupe, N. et al. Do dynamic global vegetation models capture the seasonality of carbon fluxes in the Amazon basin? A data-model intercomparison. Glob. Change Biol. 23, 191–208 (2017).

    Article  ADS  Google Scholar 

  49. Worden, J. et al. Satellite observations of the tropical terrestrial carbon balance and interactions with the water cycle during the 21st century. Rev. Geophys. 59, e2020RG000711 (2021).

  50. Kuai, L. et al. Quantifying northern high latitude gross primary productivity (GPP) using carbonyl sulfide (OCS). Glob. Biogeochem. Cycles 36, e2021GB007216 (2022).

    Article  ADS  CAS  Google Scholar 

  51. Commane, R. et al. Seasonal fluxes of carbonyl sulfide in a midlatitude forest. Proc. Natl Acad. Sci. USA 112, 14162–14167 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ma, J. et al. Inverse modelling of carbonyl sulfide: implementation, evaluation and implications for the global budget. Atmos. Chem. Phys. 21, 3507–3529 (2021).

  53. Badger, M. R. & Price, G. D. The role of carbonic anhydrase in photosynthesis. Annu. Rev. Plant Biol. 45, 369–392 (1994).

    Article  CAS  Google Scholar 

  54. Evans, J. R., Caemmerer, S. V., Setchell, B. A. & Hudson, G. S. The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Funct. Plant Biol. 21, 475–495 (1994).

    Article  CAS  Google Scholar 

  55. Ogée, J. et al. A new mechanistic framework to predict OCS fluxes from soils. Biogeosciences 13, 2221–2240 (2016).

    Article  ADS  Google Scholar 

  56. Meredith, L. K. et al. Coupled biological and abiotic mechanisms driving carbonyl sulfide production in soils. Soil Systems 2, 37 (2018).

    Article  CAS  Google Scholar 

  57. Meredith, L. K. et al. Soil exchange rates of COS and CO18O differ with the diversity of microbial communities and their carbonic anhydrase enzymes. ISME J. 13, 290–300 (2019).

    Article  CAS  PubMed  Google Scholar 

  58. Kaisermann, A., Jones, S. P., Wohl, S., Ogée, J. & Wingate, L. Nitrogen fertilization reduces the capacity of soils to take up atmospheric carbonyl sulphide. Soil Systems 2, 62 (2018).

    Article  CAS  Google Scholar 

  59. Deepagoda, T. K. K. C. et al. Density‐corrected models for gas diffusivity and air permeability in unsaturated soil. Vadose Zone J. 10, 226–238 (2011).

    Article  CAS  Google Scholar 

  60. Millington, R. J. & Quirk, J. P. Permeability of porous solids. Trans. Faraday Soc. 57, 1200–1207 (1961).

    Article  CAS  Google Scholar 

  61. Asaf, D. et al. Ecosystem photosynthesis inferred from measurements of carbonyl sulphide flux. Nat. Geosci. 6, 186–190 (2013).

    Article  ADS  CAS  Google Scholar 

  62. Restrepo-Coupe, N. et al. LBA-ECO CD-32 flux tower network data compilation, Brazilian Amazon: 1999−2006, V2. ORNL DAAC (2021).

  63. Wohlfahrt, G., Hammerle, A., Spielmann, F., Kitz, F. & Yi, C. Technical note: Novel estimates of the leaf relative uptake rate of carbonyl sulfide from optimality theory. Biogeosciences 20, 589–596 (2023).

    Article  ADS  CAS  Google Scholar 

  64. Wehr, R. et al. Seasonality of temperate forest photosynthesis and daytime respiration. Nature 534, 680–683 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.L. acknowledges the Saltonstall Fellowship and Barbara McClintock Award from the School of Integrative Plant Science at Cornell University. Y.S. acknowledges funding from the National Science Foundation (NSF) Macrosystem Biology (award 1926488). D.L. acknowledges funding from the NSF (number 2039932). Part of this work was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). L.K. was supported by NASA (the National Aeronautics and Space Administration), USA (ECOSTRESS Science and Applications Team: grant number 80NSSC20K0215). L.G. acknowledges support from the US Department of Energy (DOE), Office of Science, Biological and Environmental Research Program. The funding for L.G. was through the Oak Ridge National Laboratory Terrestrial Ecosystem Sciences Science Focus Area. This manuscript has been co-authored by UT-Battelle under contract number DE-AC05-00OR22725 with the US DOE. This work is supported by the NSF National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the NSF under Cooperative Agreement number 1852977. Specifically, we acknowledge the computing resources made available to Y.S. and J.L., including the Cheyenne and Derecho supercomputers provided by the Computational and Information Systems Laboratory (CISL) at the NCAR. Y.S., L.K. and J.E.C. acknowledge the 2017 Keck Institute for Space Studies workshop ‘Next-Generation Approach for Detecting Climate-Carbon Feedbacks: Space-Based Integration of Carbonyl Sulfide (OCS), CO2, and Solar Induced Fluorescence (SIF)’. The US government retains — and the publisher, by accepting the article for publication acknowledges that the US government retains — a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this work, or allow others to do so, for US government purposes. The US DOE will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and J.L. conceived of the study. J.L. and Y.S. developed the methodology. J.L. conducted the analyses. J.L. and Y.S. interpreted the results; L.M.J.K., W.S., D.L., J.E.C., L.G., Y.L. and L.K. helped with the interpretation. J.L. and Y.S. constructed the initial draft, and L.M.J.K., W.S., D.L., J.E.C., L.G., Y.L. and L.K. contributed critically to the subsequent revision of manuscript.

Corresponding author

Correspondence to Ying Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Teresa Gimeno and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–6, Tables 1–6 and Figs. 1–20 and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lai, J., Kooijmans, L.M.J., Sun, W. et al. Terrestrial photosynthesis inferred from plant carbonyl sulfide uptake. Nature 634, 855–861 (2024). https://doi.org/10.1038/s41586-024-08050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08050-3

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene