Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon dioxide capture from open air using covalent organic frameworks

An Author Correction to this article was published on 04 December 2024

This article has been updated

Abstract

Capture of CO2 from the air offers a promising approach to addressing climate change and achieving carbon neutrality goals1,2. However, the development of a durable material with high capacity, fast kinetics and low regeneration temperature for CO2 capture, especially from the intricate and dynamic atmosphere, is still lacking. Here a porous, crystalline covalent organic framework (COF) with olefin linkages has been synthesized, structurally characterized and post-synthetically modified by the covalent attachment of amine initiators for producing polyamines within the pores. This COF (termed COF-999) can capture CO2 from open air. COF-999 has a capacity of 0.96 mmol g–1 under dry conditions and 2.05 mmol g–1 under 50% relative humidity, both from 400 ppm CO2. This COF was tested for more than 100 adsorption–desorption cycles in the open air of Berkeley, California, and found to fully retain its performance. COF-999 is an exceptional material for the capture of CO2 from open air as evidenced by its cycling stability, facile uptake of CO2 (reaches half capacity in 18.8 min) and low regeneration temperature (60 °C).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design strategy and synthesis of COF-999.
Fig. 2: Characterization of COF-999 series.
Fig. 3: Thermodynamic and kinetic gas sorption studies of COF-999.
Fig. 4: Carbon dioxide capture from open air.

Similar content being viewed by others

Data availability

All experimental data are available in the main text or Supplementary Information. Computational results are available on Zenodo (https://doi.org/10.5281/zenodo.13382234) (ref. 42). Source data are provided with this paper.

Change history

  • 28 October 2024

    In the version of the article initially published, in Fig. 3c, the x axis read “0, 0.2, 0.2, 0.4, 0.8, 1.0” and has now been amended to “0, 0.2, 0.4, 0.6, 0.8, 1.0” in the HTML and PDF versions of the article.

  • 04 December 2024

    A Correction to this paper has been published: https://doi.org/10.1038/s41586-024-08464-z

References

  1. Lackner, K., Ziock, H.-J. & Grimes, P. Carbon dioxide extraction from air: is it an option? in 24th Annual Technical Conference on Coal Utilization and Fuel Systems (Clearwater, 1999).

  2. Lackner, K. S. et al. The urgency of the development of CO2 capture from ambient air. Proc. Natl Acad. Sci. USA 109, 13156–13162 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanz-Pérez, E. S., Murdock, C. R., Didas, S. A. & Jones, C. W. Direct capture of CO2 from ambient air. Chem. Rev. 116, 11840–11876 (2016).

    Article  PubMed  Google Scholar 

  4. Shi, X. et al. Sorbents for the direct capture of CO2 from ambient air. Angew. Chem. Int. Ed. 59, 6984–7006 (2020).

    Article  CAS  Google Scholar 

  5. Zhu, X. et al. Recent advances in direct air capture by adsorption. Chem. Soc. Rev. 51, 6574–6651 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Brethomé, F. M., Williams, N. J., Seipp, C. A., Kidder, M. K. & Custelcean, R. Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nat. Energy 3, 553–559 (2018).

    Article  ADS  Google Scholar 

  7. Keith, D. W., Holmes, G., St. Angelo, D. & Heidel, K. A process for capturing CO2 from the atmosphere. Joule 2, 1573–1594 (2018).

    Article  CAS  Google Scholar 

  8. Shekhah, O. et al. Made-to-order metal-organic frameworks for trace carbon dioxide removal and air capture. Nat. Commun. 5, 4228 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. McDonald, T. M. et al. Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J. Am. Chem. Soc. 134, 7056–7065 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Bien, C. E. et al. Bioinspired metal-organic framework for trace CO2 capture. J. Am. Chem. Soc. 140, 12662–12666 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Chen, O. I.-F. et al. Water-enhanced direct air capture of carbon dioxide in metal-organic frameworks. J. Am. Chem. Soc. 146, 2835–2844 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Nugent, P. et al. Porous materials with optimal adsorption thermodynamics and kinetics for CO2 separation. Nature 495, 80–84 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature–vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).

    Article  ADS  CAS  Google Scholar 

  14. Miao, Y., He, Z., Zhu, X., Izikowitz, D. & Li, J. Operating temperatures affect direct air capture of CO2 in polyamine-loaded mesoporous silica. Chem. Eng. J. 426, 131875 (2021).

    Article  CAS  Google Scholar 

  15. Rim, G., Feric, T. G., Moore, T. & Park, A. H. A. Solvent impregnated polymers loaded with liquid-like nanoparticle organic hybrid materials for enhanced kinetics of direct air capture and point source CO2 capture. Adv. Funct. Mater. 31, 2010047 (2021).

    Article  CAS  Google Scholar 

  16. Choe, J. H. et al. Boc protection for diamine-appended MOF adsorbents to enhance CO2 recyclability under realistic humid conditions. J. Am. Chem. Soc. 146, 646–659 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Barsoum, M. L. et al. Probing structural transformations and degradation mechanisms by direct observation in SIFSIX-3-Ni for direct air capture. J. Am. Chem. Soc. 146, 6557–6565 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Carneiro, J. S. A. et al. Insights into the oxidative degradation mechanism of solid amine sorbents for CO2 capture from air: roles of atmospheric water. Angew. Chem. Int. Ed. 62, e2023028 (2023).

    Article  Google Scholar 

  19. Yaghi, O. M., Kalmutzki, M. J. & Diercks, C. S. Introduction to Reticular Chemistry: Metal‐Organic Frameworks and Covalent Organic Frameworks (Wiley, 2019).

  20. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal158 (2017).

    Article  Google Scholar 

  21. Li, H., Dilipkumar, A., Abubakar, S. & Zhao, D. Covalent organic frameworks for CO2 capture: from laboratory curiosity to industry implementation. Chem. Soc. Rev. 52, 6294–6329 (2023).

    Article  CAS  PubMed  Google Scholar 

  22. Lyu, H., Li, H., Hanikel, N., Wang, K. & Yaghi, O. M. Covalent organic frameworks for carbon dioxide capture from air. J. Am. Chem. Soc. 144, 12989–12995 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Lin, J.-B. et al. A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science 374, 1464–1469 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Quang, D. V. et al. Effect of moisture on the heat capacity and the regeneration heat required for CO2 capture process using PEI impregnated mesoporous precipitated silica. Greenhouse Gases Sci. Technol. 5, 91–101 (2015).

    Article  CAS  Google Scholar 

  25. Jin, E. et al. Two-dimensional sp2 carbon–conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Lyu, H., Diercks, C. S., Zhu, C. & Yaghi, O. M. Porous crystalline olefin-linked covalent organic frameworks. J. Am. Chem. Soc. 141, 6848–6852 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Pawley, G. S. Unit-cell refinement from powder diffraction scans. J. Appl. Crystallogr. 14, 357–361 (1981).

    Article  ADS  CAS  Google Scholar 

  28. Brunauer, S., Emmett, P. H. & Teller, E. Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309–319 (1938).

    Article  ADS  CAS  Google Scholar 

  29. Ji, W. et al. Removal of GenX and perfluorinated alkyl substances from water by amine-functionalized covalent organic frameworks. J. Am. Chem. Soc. 140, 12677–12681 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Mao, H. et al. A scalable solid-state nanoporous network with atomic-level interaction design for carbon dioxide capture. Sci. Adv. 8, eabo6849 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. McCabe, W. L., Smith, J. C. & Harriott P. Unit Operations of Chemical Engineering 7th edn (McGraw Hill, 2004).

  32. Panda, D., Kulkarni, V. & Singh, S. K. Evaluation of amine-based solid adsorbents for direct air capture: a critical review. React. Chem. Eng. 8, 10–40 (2023).

    Article  CAS  Google Scholar 

  33. Kolle, J. M., Fayaz, M. & Sayari, A. Understanding the effect of water on CO2 adsorption. Chem. Rev. 121, 7280–7345 (2021).

    Article  CAS  PubMed  Google Scholar 

  34. Ilkaeva, M. et al. Assessing CO2 capture in porous sorbents via solid-state NMR-assisted adsorption techniques. J. Am. Chem. Soc. 145, 8764–8769 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fung, B. M., Khitrin, A. K. & Ermolaev, K. An improved broadband decoupling sequence for liquid crystals and solids. J. Magn. Reson. 142, 97–101 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Johnson, R. L. & Schmidt-Rohr, K. Quantitative solid-state 13C NMR with signal enhancement by multiple cross polarization. J. Magn. Reson. 239, 44–49 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  ADS  CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  ADS  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Zhou, Z. et al. Computational results for the publication “Carbon dioxide capture from open air using covalent organic frameworks”. Zenodo https://doi.org/10.5281/zenodo.13382234 (2024).

Download references

Acknowledgements

Z.Z. thanks H. Lyu, O. I.-F. Chen, Z. Rong and W. Xu (Yaghi Research Group, UC Berkeley) for their discussions. We thank H. Celik and the Core NMR Facility of UC Berkeley Pines Magnetic Resonance Center for spectroscopic assistance. We also thank the UC Berkeley Electron Microscope Laboratory for access and assistance in electron microscopy data collection. This research was supported by the King Abdulaziz City for Science and Technology (Center of Excellence for Nanomaterials and Clean Energy Applications), ATOCO and the Bakar Institute of Digital Materials for the Planet. The NMR instruments used in this work were supported by the National Science Foundation under grant no. 2018784 and by the National Institutes of Health under grant S10OD024998. Z.Z. and O.M.Y. acknowledge the interest and support of Fifth Generation (Love, Tito’s). S.E. thanks the Free State of Saxony and the European Union (Low Surface and Pore Sorption LSPS) for financial support. J.S. is also a distinguished visiting scholar at UC Berkeley.

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. and O.M.Y. conceived the idea and led the experimental efforts. Z.Z. designed the COFs and developed synthetic methodologies. Z.Z., T.M., H.Z. and C.L. conducted the synthesis of linkers and COF-999-N3. T.M. and Z.Z. collected and analysed the SEM, PXRD, thermogravimetric analysis and FT-IR data. Z.Z., R.G. and K.W. conducted the NMR experiments. Z.Z., K.W., T.M., S.E. and A.H.A. collected the gas sorption data. Z.Z., H.L. and S.E. performed the breakthrough experiments. S.C. and J.S. led the computational analysis. S.C. conducted the DFT calculations. L.G. advised on the computational setup. M.M.A. and M.O.A. provided valuable suggestions throughout this study. Z.Z., T.M. and O.M.Y. prepared the initial draft and finalized it. All authors contributed to revising the paper.

Corresponding authors

Correspondence to Joachim Sauer or Omar M. Yaghi.

Ethics declarations

Competing interests

COF-999 and its related materials have been filed as US Provisional Patent Application no. 63/587,185 by UC Berkeley. O.M.Y. and Z.Z. are the inventors of this patent. O.M.Y. is a co-founder of ATOCO, aiming at commercializing related technologies. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 CO2 adsorption structures in COF-999.

a, Formation of carbamic acid under dry conditions. b, Formation of carbamic acid/carbamate under humid conditions. c, Formation of bicarbonate under humid conditions. All numbers represent atom distances in pm. C, gray; N, blue; O, red; H, white. Additional structures are shown in Supplementary Information section 14.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Ma, T., Zhang, H. et al. Carbon dioxide capture from open air using covalent organic frameworks. Nature 635, 96–101 (2024). https://doi.org/10.1038/s41586-024-08080-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08080-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing