Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia

Abstract

Aerial light detection and ranging (lidar) has emerged as a powerful technology for mapping urban archaeological landscapes, especially where dense vegetation obscures site visibility1,2. More recently, uncrewed aerial vehicle/drone lidar scanning has markedly improved the resolution of three-dimensional point clouds, allowing for the detection of slight traces of structural features at centimetres of detail across large archaeological sites, a method particularly useful in areas such as mountains, where rapid deposition and erosion irregularly bury and expose archaeological remains3. Here we present the results of uncrewed aerial vehicle–lidar surveys in Central Asia, conducted at two recently discovered archaeological sites in southeastern Uzbekistan: Tashbulak and Tugunbulak. Situated at around 2,000–2,200 m above sea level, these sites illustrate a newly documented geography of large, high-altitude urban centres positioned along the mountainous crossroads of Asia’s medieval Silk Routes (6th–11th century CE (Common Era)4,5. Although hidden by centuries of surface processes, our pairing of very-high-resolution surface modelling with semiautomated feature detection produces a detailed plan of monumental fortifications and architecture spanning 120 ha at Tugunbulak, thereby demonstrating one of the largest highland urban constellations in premodern Central Asia. Documentation of extensive urban infrastructure and technological production among medieval communities in Central Asia’s mountains—a crucial nexus for Silk Road trade networks6—provides a new perspective on the participation of highland populations in the economic, political and social formation of medieval Eurasia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Location of study sites.
Fig. 2: Lidar mapping of Tugunbulak.
Fig. 3: Lidar mapping of Tashbulak.
Fig. 4: Lidar and crest line mapping of sector A, Tugunbulak.
Fig. 5: Comparison of GPR and lidar crest lines at Tashbulak.

Similar content being viewed by others

Data availability

All relevant data are provided with the paper and its Supplementary Information. The datasets used to calibrate all radiocarbon dates are available in Supplementary Table 3. An abridged lidar dataset required to execute crest line analysis and correlation and validation analyses is openly available at GitHub (https://github.com/JasonLiu2024/high-resolution-lidar-traces-large-scale-medieval-urbanism).

Code availability

All code required to execute crest line analysis and correlation and validation analyses is openly available at GitHub (https://github.com/JasonLiu2024/high-resolution-lidar-traces-large-scale-medieval-urbanism).

References

  1. Chase, A. F., Chase, D. Z., Fisher, C. T., Leisz, S. J. & Weishampel, J. F. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology. Proc. Natl Acad. Sci. USA 109, 12916–12921 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Prümers, H., Betancourt, C. J., Iriarte, J., Robinson, M. & Schaich, M. Lidar reveals pre-Hispanic low-density urbanism in the Bolivian Amazon. Nature 606, 325–328 (2022).

    Article  ADS  PubMed  Google Scholar 

  3. Casana, J. et al. Exploring archaeological landscapes using drone-acquired lidar: case studies from Hawai’i, Colorado, and New Hampshire, USA. J. Archaeol. Sci. Rep. 39, 103133 (2021).

    Google Scholar 

  4. Frachetti, M. D. & Maksudov, F. The landscape of ancient mobile pastoralism in the highlands of southeastern Uzbekistan, 2000 BC – 1400 AD. J. Field Archaeol. 39, 195–212 (2014).

    Article  Google Scholar 

  5. Maksudov, F. et al. in Urban Cultures in Central Asia from the Bronze Age to the Karakhanids (eds Baumer, C. & Novák, M.) 283–305 (Harrassowitz Verlag, 2019).

  6. Frachetti, M. D., Smith, C. E., Traub, C. & Williams, T. Nomadic ecology shaped the highland geography of Asia’s Silk Roads. Nature 543, 193–198 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Cowgill, G. L. Origins and development of urbanism: archaeological perspectives. Annu. Rev. Anthropol. 33, 525–549 (2004).

    Article  Google Scholar 

  8. Smith, M. L. The archaeology of urban landscapes. Annu. Rev. Anthropol. 43, 307–323 (2014).

    Article  Google Scholar 

  9. Smith, M. Urban Life in the Distant Past: The Prehistory of Energized Crowding (Cambridge Univ. Press, 2023).

  10. Fletcher, R. Urban labels and settlement trajectories. J. Urban Archaeol. 1, 31–48 (2020).

    Article  Google Scholar 

  11. Nebbia, M. Early Cities or Large Villages? Settlement Dynamics in the Trypillia Group, Ukraine. Doctoral thesis, Durham Univ. (2017).

  12. Chapman, J., Gaydarska, B. & Nebbia, M. The origins of Trypillia megasites. Front. Digit. Humanit. 6, 10 (2019).

  13. White, K. & Fletcher, R. Anomalous giants: form, operation, differences, and outcomes. J. Urban Archaeol. 7, 275–311 (2023).

    Article  Google Scholar 

  14. Bellina, B. Maritime Silk Roads’ ornament industries: socio-political practices and cultural transfers in the South China Sea. Camb. Archaeol. J. 24, 345–377 (2014).

    Article  Google Scholar 

  15. Fletcher, R. Trajectories to low-density settlements past and present: paradox and outcomes. Front. Digit. Humanit. 6, 14 (2019).

    Article  Google Scholar 

  16. Miksic, J. Khao Sam Kaeo: an early port-city between the Indian Ocean and the South China Sea edited by Berenice Bellina. J. Malays. Branch R. Asiat. Soc. 91, 155–159 (2018).

    Article  Google Scholar 

  17. Rogers, J. D., Ulambayar, E. & Gallon, M. Urban centres and the emergence of empires in Eastern Inner Asia. Antiquity 79, 801–818 (2005).

    Article  Google Scholar 

  18. Honeychurch, W. & Amartuvshin, C. Hinterlands, urban centers, and mobile settings: the ‘New’ Old World archaeology from the Eurasian Steppe. Asian Perspect. 46, 36–64 (2007).

    Article  Google Scholar 

  19. Hammer, E. Multi-centric, marsh-based urbanism at the early Mesopotamian city of Lagash (Tell al-Hiba, Iraq). J. Anthropol. Archaeol. 68, 101458 (2022).

    Article  Google Scholar 

  20. Evans, D. H. et al. Uncovering archaeological landscapes at Angkor using lidar. Proc. Natl Acad. Sci. USA 110, 12595–12600 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Hare, T., Masson, M. & Russell, B. High-density LiDAR mapping of the ancient city of Mayapán. Remote Sens. 6, 9064–9085 (2014).

    Article  ADS  Google Scholar 

  22. Reichert, S., Erdene-Ochir, N.-O., Linzen, S., Munkhbayar, Lkh & Bemmann, J. Overlooked—enigmatic—underrated: the city Khar Khul Khaany Balgas in the heartland of the Mongol world empire. J. Field Archaeol. 47, 397–420 (2022).

    Article  Google Scholar 

  23. Piezonka, H. et al. Lost cities in the Steppe: investigating an enigmatic site type in early modern Mongolia. Antiquity 97, e12 (2023).

    Article  Google Scholar 

  24. McIntosh, R. J. Ancient Middle Niger: Urbanism and the Self-Organizing Landscape (Cambridge Univ. Press, 2005).

  25. Fletcher, R. & Evans, D. in Old Myths and New Approaches (ed. Haendel, A.) 42–62 (Monash Univ. Publishing, 2012).

  26. Flad, R. K. & Chen, P. Ancient Central China (Cambridge Univ. Press, 2013).

  27. Canuto, M. A. & Auld-Thomas, L. Taking the high ground: a model for lowland Maya settlement patterns. J. Anthropol. Archaeol. 64, 101349 (2021).

    Article  Google Scholar 

  28. Tremblay, J. C. & Ainslie, P. N. Global and country-level estimates of human population at high altitude. Proc. Natl Acad. Sci. USA 118, e2102463118 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. Aldenderfer, M. Modelling plateau peoples: the early human use of the world’s high plateaux. World Archaeol. 38, 357–370 (2006).

    Article  Google Scholar 

  30. Janusek, J. W. Incipient urbanism at the Early Andean center of Khonkho Wankane, Bolivia. J. Field Archaeol. 40, 127–143 (2015).

    Article  Google Scholar 

  31. Leadbetter, M. P. & Sastrawan, W. J. Do mountains kill states? Exploring the diversity of Southeast Asian highland communities. J. Glob. Hist. 19, 195–220 (2024).

  32. Körner, C. in Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems (ed. Körner, C.) 23–51 (Springer International Publishing, 2021).

  33. Aldenderfer, M. S. in The Handbook of South American Archaeology (eds Silverman, H. & Isbell, W. H.) 131–143 (Springer New York, 2008).

  34. VanValkenburgh, P. et al. Lasers without lost cities: using drone Lidar to capture architectural complexity at Kuelap, Amazonas, Peru. J. Field Archaeol. 45, S75–S88 (2020).

    Article  Google Scholar 

  35. Risbøl, O. & Gustavsen, L. LiDAR from drones employed for mapping archaeology–potential, benefits and challenges. Archaeol. Prospect. 25, 329–338 (2018).

    Article  Google Scholar 

  36. Li, Z. New opportunities for archaeological research in the Greater Ghingan Range, China: application of UAV LiDAR in the archaeological survey of the Shenshan Mountain. J. Archaeol. Sci. Rep. 51, 104182 (2023).

    ADS  Google Scholar 

  37. Evans, D. Airborne laser scanning as a method for exploring long-term socio-ecological dynamics in Cambodia. J. Archaeol. Sci. 74, 164–175 (2016).

    Article  Google Scholar 

  38. Masini, N. et al. Medieval archaeology under the canopy with LiDAR. The (re)discovery of a medieval fortified settlement in southern Italy. Remote Sens. 10, 1598 (2018).

    Article  ADS  Google Scholar 

  39. Inomata, T. et al. Origins and spread of formal ceremonial complexes in the Olmec and Maya regions revealed by airborne lidar. Nat. Hum. Behav. 5, 1487–1501 (2021).

    Article  PubMed  Google Scholar 

  40. Casana, J. et al. Multi-sensor drone survey of ancestral agricultural landscapes at Picuris Pueblo, New Mexico. J. Archaeol. Sci. 157, 105837 (2023).

    Article  Google Scholar 

  41. Henry, E. R., Shields, C. R. & Kidder, T. R. Mapping the Adena-Hopewell landscape in the Middle Ohio Valley, USA: multi-scalar approaches to LiDAR-derived imagery from central Kentucky. J. Archaeol. Method Theory 26, 1513–1555 (2019).

    Article  Google Scholar 

  42. Yoshizawa, S., Belyaev, A. & Seidel, H.-P. Fast and robust detection of crest lines on meshes. In Proc. 2005 ACM Symposium on Solid and Physical Modeling (eds Yoshizawa, S. et al.) 227–232 (Association for Computing Machinery, 2005).

  43. Mantellini, S. & Berdimuadov, A. Archaeological explorations in the Sogdian fortress of Kafir Kala. Anc. Civiliz. Scythia Sib. 11, 107–132 (2005).

    Article  Google Scholar 

  44. Lurje, P. B. in Urban Cultures of Central Asia from the Bronze Age to the Karakhanids (eds Baumer, C. & Novák, M.) 333–348 (Harrassowitz Verlag, 2019).

  45. Steger, C. An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 20, 113–125 (1998).

    Article  Google Scholar 

  46. Mayr, A., Bremer, M., Rutzinger, M. & Geitner, C. Unmanned aerial vehicle laser scanning for erosion monitoring in alpine grassland. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 4, 405–412 (2019).

    Article  Google Scholar 

  47. Resop, J. P., Lehmann, L. & Hession, W. C. Drone laser scanning for modeling riverscape topography and vegetation: comparison with traditional aerial lidar. Drones 3, 35 (2019).

    Article  Google Scholar 

  48. Williams, P. R., Londono, A. C. & Hart, M. in New Geospatial Approaches to the Anthropological Sciences (eds Anemone, R. L. & Conroy, G. C.) Ch. 10 (SAR, 2018).

  49. Oczipka, M. et al. Small drones for geo-archaeology in the steppes: locating and documenting the archaeological heritage of the Orkhon Valley in Mongolia. In Remote Sensing for Environmental Monitoring, GIS Applications, and Geology IX Vol. 7478, 747806 (SPIE, 2009).

  50. Block-Berlitz, M. et al. Area-optimized, rapid UAV-borne recording of medieval heritage in Central Asia. J. Field Archaeol. 47, 90–104 (2022).

    Article  Google Scholar 

  51. Baipakov, К. М. Drevnjaja i srednevekovaja urbanizacija Kazahstana (po materialam issledovanij Juzhno-Kazahstanskoj kompleksnoj arheologicheskoj jekspedicii), Kniga I. Urbanizacija v jepohu bronzy – rannem srednevekov'e [Russian] (Inst. Archaeology MON RK, Almaty, 2012).

  52. Rapin, C. in Zwischen Ost und West. Neue Forschungen zum antiken Zentralasien (eds Lindström, G. et al.) Vol. 14 43–82 (Philipp von Zabern, 2013).

  53. Grenet, F. in The History and Culture of Iran and Central Asia: From the Pre-Islamic to the Islamic Period (eds Tor, D. G. & Inaba, M.) 11–40 (University of Notre Dame Press, 2022).

  54. Mantellini, S., Di Cugno, S., Dimartino, R. & Berdimuradov, A. E. Change and continuity in the Samarkand oasis: evidence for the Islamic conquest from the citadel of Kafir Kala. J. Inn. Asian Art Archaeol. 7, 227–253 (2016).

    Google Scholar 

  55. Sverchkov, L. M. A history of research on ancient mining in Uzbekistan. Archaologische Mitteilungen Aus Iran Turan 41, 141–164 (2009).

    Google Scholar 

  56. Spengler, R. N. et al. Arboreal crops on the medieval Silk Road: Archaeobotanical studies at Tashbulak. PLoS ONE 13, e0201409 (2018).

    Article  PubMed  Google Scholar 

  57. Bullion, E., Maksudov, F., Henry, E. R., Merkle, A. & Frachetti, M. Community practice and religion at an Early Islamic cemetery in highland Central Asia. Antiquity 96, 628–645 (2022).

    Article  Google Scholar 

  58. Besl, P. J. & McKay, N. D. Method for registration of 3-D shapes. In Sensor Fusion IV: Control Paradigms and Data Structures (ed. Schenker, P. S.) Vol. 1611, 586–606 (SPIE, 1992).

  59. Kazhdan, M. & Hoppe, H. Screened Poisson surface reconstruction. ACM Trans. Graph. 32, 3 (2013).

    Article  Google Scholar 

  60. Cignoni, P. et al. Meshlab: an open-source mesh processing tool. Computing 1, 129–136 (2008).

  61. Story, M. & Congalton, R. G. Accuracy assessment: a user’s perspective. Photogramm. Eng. Remote Sens. 52, 397–399 (1986).

    Google Scholar 

  62. Abdollahi, A., Pradhan, B., Shukla, N., Chakraborty, S. & Alamri, A. Deep learning approaches applied to remote sensing datasets for road extraction: a state-of-the-art review. Remote Sens. 12, 1444 (2020).

    Article  ADS  Google Scholar 

  63. Dong, R., Pan, X. & Li, F. DenseU-net-based semantic segmentation of small objects in urban remote sensing images. IEEE Access 7, 65347–65356 (2019).

    Article  Google Scholar 

  64. Monna, F. et al. Machine learning for rapid mapping of archaeological structures made of dry stones–example of burial monuments from the Khirgisuur culture, Mongolia. J. Cult. Herit. 43, 118–128 (2020).

    Article  Google Scholar 

  65. Du, X. et al. Isometric energies for recovering injectivity in constrained mapping. In SIGGRAPH Asia 2022 Conference Papers 1–9 (ACM, 2022).

Download references

Acknowledgements

The 2022 fieldwork at Tugunbulak was funded by the National Geographic Society (PI-Frachetti). The drone and lidar equipment were provided by a grant from the McDonnell Center for the Space Sciences, Washington University in St. Louis (co-PI, Frachetti). Since 2023, the project has been codirected by M. Frachetti, F. Maksudov and S. Mehendale, with onward funding provided by the Tang Center for Silk Road Studies and the Society for Archaeological Exploration of Eurasia. Special thanks to the former Ambassador of Uzbekistan, J. Vakhabov, and to A. Burkhanov (Ministry of Foreign Affairs, Uzbekistan), for facilitating drone permissions.

Author information

Authors and Affiliations

Authors

Contributions

M.D.F. and F.M. conceptualized the study. M.D.F., F.M. and E.R.H. collected the data. M.D.F. and T.J. designed the methodology and analysis, with input from F.M., J.B. and X.L. M.D.F., J.B., X.L., E.R.H. and T.J. carried out the analysis. M.D.F. and J.B. wrote the initial draft, and all authors contributed to writing and editing of the final manuscript.

Corresponding author

Correspondence to Michael D. Frachetti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Nicola Di Cosmo, Roland Fletcher, Simone Mantellini, Andreas Mayr and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Panoramic photos of study sites.

a) Tugunbulak, view east and b) Tashbulak, view northeast. Photos by M. Frachetti.

Extended Data Fig. 2 Detail lidar and crestline mapping, Tashbulak.

a) Very high resolution (VHR) lidar surface of Tashbulak, hill-shaded with 2x vertical exaggeration; b) Weighted crest line feature mapping of Tashbulak; c) detail of main structural area (hill shaded topography with crest lines); d) detail of southern extent of site showing outer wall features (hill shaded topography with crest lines).

Extended Data Fig. 3 Radiocarbon chronology, Tugunbulak.

Preliminary calibrated date ranges of AMS radiocarbon samples from Tugunbulak (sector A, excavations 2022). (For dates and calibration data, see Supplementary Information, Table 3).

Extended Data Fig. 4 Lidar and crestline mapping, Tugunbulak sector B.

a) Detail of lidar surface of sector B, Tugunbulak (hill-shaded with 2x vertical exaggeration) b) Weighted crest line feature mapping of sector B, Tugunbulak.

Extended Data Fig. 5 Lidar and crestline mapping, Tugunbulak sector C and D.

a) detail of lidar surface of sector C, Tugunbulak (hill-shaded with 2x vertical exaggeration); b) weighted crest line feature mapping of sector C, Tugunbulak. c) Detailed lidar surface of sector D Tugunbulak (hill-shaded with 2x vertical exaggeration). d) Weighted crest line feature mapping of sector D, Tugunbulak. Note: adjusted parameters for crest line rendering in these images are d = 11 (mesh depth) and n = 4 (neighborhood) (see Methods).

Extended Data Fig. 6 Correlation and hit rates of Tugunbulak manual tracing and crest lines.

Results of confusion matrix and spatial correlation (hit rates) between visually drawn features and semi-auto detected crest lines in selected polygon at Tugunbulak (Blue = hits, Red = miss). Correlation radii shown at .9 m and 1.4 m.

Extended Data Fig. 7 Correlation and hit rates of Tashbulak GPR and crest lines.

Comparative results of confusion matrix and spatial correlation (hit rates) between GPR centerlines and semi-auto detected crest lines in main area of architecture at Tashbulak, (Blue = hits, Red = miss). Correlation radii shown at 0.8 m, 1.0 m and 1.2 m.

Extended Data Fig. 8 Detailed view, Tashbulak GPR and crestline correlation.

Detailed view of correlation between GPR centerlines and semi-auto detected crest lines in two focal areas of architecture at Tashbulak. (Blue = hits, Red = miss). Correlation radius shown at 1.0 m.

Supplementary information

Supplementary Information

Supplementary information, including Figs. 1–10 and Tables 1–4.

Reporting Summary

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Frachetti, M.D., Berner, J., Liu, X. et al. Large-scale medieval urbanism traced by UAV–lidar in highland Central Asia. Nature 634, 1118–1124 (2024). https://doi.org/10.1038/s41586-024-08086-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08086-5

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics