Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Charge-neutral electronic excitations in quantum insulators

Abstract

Experiments on quantum materials have uncovered many interesting quantum phases ranging from superconductivity to a variety of topological quantum matter including the recently observed fractional quantum anomalous Hall insulators. The findings have come in parallel with the development of approaches to probe the rich excitations inherent in such systems. In contrast to observing electrically charged excitations, the detection of charge-neutral electronic excitations in condensed matter remains difficult, although they are essential to understanding a large class of strongly correlated phases. Low-energy neutral excitations are especially important in characterizing unconventional phases featuring electron fractionalization, such as quantum spin liquids, spin ices and insulators with neutral Fermi surfaces. In this Perspective, we discuss searches for neutral fermionic, bosonic or anyonic excitations in unconventional insulators, highlighting theoretical and experimental progress in probing excitonic insulators, new quantum spin liquid candidates and emergent correlated insulators based on two-dimensional layered crystals and moiré materials. We outline the promises and challenges in probing and using quantum insulators, and discuss exciting new opportunities for future advancements offered by ideas rooted in next-generation quantum materials, devices and experimental schemes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electron fractionalization and charge-neutral excitations in quantum insulators.
Fig. 2: Excitonic insulators.
Fig. 3: QSLs.
Fig. 4: Transport and thermoelectric quantum oscillations in WTe2 monolayer insulators.

Similar content being viewed by others

References

  1. Giamarchi, T. Quantum Physics in One Dimension (Oxford Univ. Press, 2003).

  2. Lee, P. A., Nagaosa, N. & Wen, X.-G. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    ADS  CAS  Google Scholar 

  3. Coleman, P. Theories of non-Fermi liquid behavior in heavy fermions. Phys. B Condens. Matter 259–261, 353–358 (1999).

    ADS  Google Scholar 

  4. Stewart, G. R. Non-Fermi-liquid behavior in d- and f-electron metals. Rev. Mod. Phys. 73, 797–855 (2001).

    ADS  CAS  Google Scholar 

  5. Cao, Y. et al. Strange metal in magic-angle graphene with near Planckian dissipation. Phys. Rev. Lett. 124, 076801 (2020).

    ADS  CAS  PubMed  Google Scholar 

  6. Jaoui, A. et al. Quantum critical behaviour in magic-angle twisted bilayer graphene. Nat. Phys. 18, 633–638 (2022).

    CAS  Google Scholar 

  7. Wang, P. et al. One-dimensional Luttinger liquids in a two-dimensional moiré lattice. Nature 605, 57–62 (2022).

    ADS  CAS  PubMed  Google Scholar 

  8. Yu, G. et al. Evidence for two dimensional anisotropic Luttinger liquids at Millikelvin temperatures. Nat. Commun. 14, 7025 (2023).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackiw, R. & Rebbi, C. Solitons with fermion number ½. Phys. Rev. D 13, 3398–3409 (1976).

    ADS  MathSciNet  CAS  Google Scholar 

  10. Su, W. P., Schrieffer, J. R. & Heeger, A. J. Solitons in polyacetylene. Phys. Rev. Lett. 42, 1698–1701 (1979).

    ADS  CAS  Google Scholar 

  11. Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).

    ADS  CAS  Google Scholar 

  12. Arovas, D., Schrieffer, J. R. & Wilczek, F. Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984).

    ADS  Google Scholar 

  13. Stern, A. Anyons and the quantum Hall effect—a pedagogical review. Ann. Phys. 323, 204–249 (2008).

    ADS  MathSciNet  CAS  Google Scholar 

  14. Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    ADS  MathSciNet  CAS  Google Scholar 

  15. Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973). This paper proposed the RVB state, which initiated the research of spin liquids.

    CAS  Google Scholar 

  16. Anderson, P. W. The resonating valence bond state in La2CuO4 and superconductivity. Science 235, 1196–1198 (1987).

    ADS  CAS  PubMed  Google Scholar 

  17. Moessner, R. & Sondhi, S. L. Resonating valence bond phase in the triangular lattice quantum dimer model. Phys. Rev. Lett. 86, 1881–1884 (2001). This paper concluded the search for an RVB liquid by demonstrating its existence in a microscopic model.

    ADS  CAS  PubMed  Google Scholar 

  18. Moessner, R. & Moore, J. E. Topological Phases of Matter (Cambridge Univ. Press, 2021).

  19. Kitaev, A. Y. Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003).

    ADS  MathSciNet  CAS  Google Scholar 

  20. Wen, X.-G. Quantum orders and symmetric spin liquids. Phys. Rev. B 65, 165113 (2002).

    ADS  Google Scholar 

  21. Read, N. & Chakraborty, B. Statistics of the excitations of the resonating-valence-bond state. Phys. Rev. B 40, 7133–7140 (1989).

    ADS  CAS  Google Scholar 

  22. Kalmeyer, V. & Laughlin, R. B. Equivalence of the resonating-valence-bond and fractional quantum Hall states. Phys. Rev. Lett. 59, 2095–2098 (1987).

    ADS  CAS  PubMed  Google Scholar 

  23. Pace, S. D., Morampudi, S. C., Moessner, R. & Laumann, C. R. Emergent fine structure constant of quantum spin ice is large. Phys. Rev. Lett. 127, 117205 (2021).

    ADS  CAS  PubMed  Google Scholar 

  24. Hermele, M. et al. Stability of U(1) spin liquids in two dimensions. Phys. Rev. B 70, 214437 (2004).

    ADS  Google Scholar 

  25. Lee, S.-S. Stability of the U(1) spin liquid with a spinon Fermi surface in 2+1 dimensions. Phys. Rev. B 78, 085129 (2008).

    ADS  Google Scholar 

  26. Huse, D. A., Krauth, W., Moessner, R. & Sondhi, S. L. Coulomb and liquid dimer models in three dimensions. Phys. Rev. Lett. 91, 167004 (2003).

    ADS  PubMed  Google Scholar 

  27. Hermele, M., Fisher, M. P. A. & Balents, L. Pyrochlore photons: the U(1) spin liquid in a S = 1/2 three-dimensional frustrated magnet. Phys. Rev. B 69, 064404 (2004).

    ADS  Google Scholar 

  28. Castelnovo, C., Moessner, R. & Sondhi, S. L. Magnetic monopoles in spin ice. Nature 451, 42–45 (2008).

    ADS  CAS  PubMed  Google Scholar 

  29. Ng, T.-K. & Lee, P. A. Power-law conductivity inside the Mott gap: application to κ-(BEDT–TTF)2Cu2(CN)3. Phys. Rev. Lett. 99, 156402 (2007).

    ADS  PubMed  Google Scholar 

  30. Motrunich, O. I. Orbital magnetic field effects in spin liquid with spinon Fermi sea: possible application to κ-(ET)2 (Cu)2(CN)3. Phys. Rev. B 73, 155115 (2006). This paper predicted spinon Landau quantization in magnetic fields, a key step in the search for neutral fermions using quantum oscillations.

    ADS  Google Scholar 

  31. Sodemann, I., Chowdhury, D. & Senthil, T. Quantum oscillations in insulators with neutral Fermi surfaces. Phys. Rev. B 97, 045152 (2018). This paper developed a theory of quantum oscillations in observables such as resistance and magnetization induced by spinon Landau quantization.

    ADS  CAS  Google Scholar 

  32. Rao, P. & Sodemann, I. Cyclotron resonance inside the Mott gap: a fingerprint of emergent neutral fermions. Phys. Rev. B 100, 155150 (2019).

    ADS  CAS  Google Scholar 

  33. Khoo, J. Y., Pientka, F., Lee, P. A. & Villadiego, I. S. Probing the quantum noise of the spinon Fermi surface with NV centers. Phys. Rev. B 106, 115108 (2022).

    ADS  CAS  Google Scholar 

  34. Jérome, D., Rice, T. M. & Kohn, W. Excitonic insulator. Phys. Rev. 158, 462–475 (1967).

    ADS  Google Scholar 

  35. Kohn, W. Excitonic phases. Phys. Rev. Lett. 19, 439–442 (1967).

    ADS  CAS  Google Scholar 

  36. Blatt, J. M., Böer, K. W. & Brandt, W. Bose-Einstein condensation of excitons. Phys. Rev. 126, 1691–1692 (1962).

    ADS  CAS  Google Scholar 

  37. Mott, N. F. The transition to the metallic state. Philos. Mag. 6, 287–309 (1961).

    ADS  CAS  Google Scholar 

  38. Halperin, B. I. & Rice, T. M. Possible anomalies at a semimetal-semiconductor transition. Rev. Mod. Phys. 40, 755–766 (1968).

    ADS  CAS  Google Scholar 

  39. Kwan, Y. H., Devakul, T., Sondhi, S. L. & Parameswaran, S. A. Theory of competing excitonic orders in insulating WTe2 monolayers. Phys. Rev. B 104, 125133 (2021).

    ADS  CAS  Google Scholar 

  40. Wang, Y.-Q., Papaj, M. & Moore, J. E. Breakdown of helical edge state topologically protected conductance in time-reversal-breaking excitonic insulators. Phys. Rev. B 108, 205420 (2023).

    ADS  CAS  Google Scholar 

  41. Hu, Y., Venderbos, J. W. F. & Kane, C. L. Fractional excitonic insulator. Phys. Rev. Lett. 121, 126601 (2018).

    ADS  CAS  PubMed  Google Scholar 

  42. Chowdhury, D., Sodemann, I. & Senthil, T. Mixed-valence insulators with neutral Fermi surfaces. Nat. Commun. 9, 1766 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  43. Xu, X., Yao, W., Xiao, D. & Heinz, T. F. Spin and pseudospins in layered transition metal dichalcogenides. Nat. Phys. 10, 343–350 (2014).

    CAS  Google Scholar 

  44. Wang, G. et al. Colloquium: excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

    ADS  MathSciNet  CAS  Google Scholar 

  45. Eisenstein, J. P. Exciton condensation in bilayer quantum Hall systems. Annu. Rev. Condens. Matter Phys. 5, 159–181 (2014).

    ADS  CAS  Google Scholar 

  46. Liu, X., Watanabe, K., Taniguchi, T., Halperin, B. I. & Kim, P. Quantum Hall drag of exciton condensate in graphene. Nat. Phys. 13, 746–750 (2017).

    CAS  Google Scholar 

  47. Li, J. I. A., Taniguchi, T., Watanabe, K., Hone, J. & Dean, C. R. Excitonic superfluid phase in double bilayer graphene. Nat. Phys. 13, 751–755 (2017).

    CAS  Google Scholar 

  48. Du, L. et al. Evidence for a topological excitonic insulator in InAs/GaSb bilayers. Nat. Commun. 8, 1971 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  49. Yu, W. et al. Anomalously large resistance at the charge neutrality point in a zero-gap InAs/GaSb bilayer. New J. Phys. 20, 053062 (2018).

    ADS  Google Scholar 

  50. Chen, D. et al. Excitonic insulator in a heterojunction moiré superlattice. Nat. Phys. 18, 1171–1176 (2022).

    CAS  Google Scholar 

  51. Zhang, Z. et al. Correlated interlayer exciton insulator in heterostructures of monolayer WSe2 and moiré WS2/WSe2. Nat. Phys. 18, 1214–1220 (2022).

    CAS  Google Scholar 

  52. Ma, L. et al. Strongly correlated excitonic insulator in atomic double layers. Nature 598, 585–589 (2021).

    ADS  CAS  PubMed  Google Scholar 

  53. Cercellier, H. et al. Evidence for an excitonic insulator phase in 1T TiSe2. Phys. Rev. Lett. 99, 146403 (2007).

    ADS  CAS  PubMed  Google Scholar 

  54. Kogar, A. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 358, 1314–1317 (2017).

    ADS  CAS  PubMed  Google Scholar 

  55. Campbell, D. J. et al. Intrinsic insulating ground state in transition metal dichalcogenide TiSe2. Phys. Rev. Mater. 3, 053402 (2019).

    CAS  Google Scholar 

  56. Li, Z. et al. Possible excitonic insulating phase in quantum-confined Sb nanoflakes. Nano Lett. 19, 4960–4964 (2019).

    ADS  CAS  PubMed  Google Scholar 

  57. Wakisaka, Y. et al. Excitonic insulator state in Ta2NiSe5 probed by photoemission spectroscopy. Phys. Rev. Lett. 103, 026402 (2009).

    ADS  CAS  PubMed  Google Scholar 

  58. Lu, Y. F. et al. Zero-gap semiconductor to excitonic insulator transition in Ta2NiSe5. Nat. Commun. 8, 14408 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fukutani, K. et al. Electrical tuning of the excitonic insulator ground state of Ta2NiSe5. Phys. Rev. Lett. 123, 206401 (2019).

    ADS  CAS  PubMed  Google Scholar 

  60. Werdehausen, D. et al. Coherent order parameter oscillations in the ground state of the excitonic insulator Ta2NiSe5. Sci. Adv. 4, eaap8652 (2018).

    ADS  PubMed  PubMed Central  Google Scholar 

  61. Baldini, E. et al. The spontaneous symmetry breaking in Ta2NiSe5 is structural in nature. Proc. Natl Acad. Sci. USA 120, e2221688120 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hossain, M. S. et al. Discovery of a topological exciton insulator with tunable momentum order. Preprint at https://arxiv.org/abs/2312.15862 (2023).

  63. Huang, J. et al. Evidence for an excitonic insulator state in Ta2Pd3Te5. Phys. Rev. X 14, 011046 (2024).

  64. Jia, Y. et al. Evidence for a monolayer excitonic insulator. Nat. Phys. 18, 87–93 (2022). This paper, together with ref. 65, identified a 2D natural crystal (monolayer WTe2) as an excitonic insulator.

    CAS  Google Scholar 

  65. Sun, B. et al. Evidence for equilibrium exciton condensation in monolayer WTe2. Nat. Phys. 18, 94–99 (2022). This paper, together with ref. 64, identified a 2D natural crystal (monolayer WTe2) as an excitonic insulator.

    ADS  CAS  Google Scholar 

  66. Lee, P. A. Quantum oscillations in the activated conductivity in excitonic insulators: possible application to monolayer WTe2. Phys. Rev. B 103, L041101 (2021).

    ADS  CAS  Google Scholar 

  67. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    ADS  CAS  PubMed  Google Scholar 

  68. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    CAS  Google Scholar 

  69. Tang, S. et al. Quantum spin Hall state in monolayer 1T′-WTe2. Nat. Phys. https://doi.org/10.1038/nphys4174 (2017).

  70. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  71. Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  72. Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    ADS  CAS  PubMed  Google Scholar 

  73. Wang, P. et al. Landau quantization and highly mobile fermions in an insulator. Nature 589, 225–229 (2021). This paper, together with ref. 74, reported quantum oscillations in monolayer WTe2 insulator.

    ADS  CAS  PubMed  Google Scholar 

  74. Tang, Y. et al. Sign-alternating thermoelectric quantum oscillations and insulating Landau levels in monolayer WTe2. Preprint at https://arxiv.org/abs/2405.09665 (2024). This paper, together with ref. 73, reported quantum oscillations in monolayer WTe2 insulator.

  75. Song, T. et al. Unconventional superconducting quantum criticality in monolayer WTe2. Nat. Phys. 20, 269–274 (2024).

    CAS  Google Scholar 

  76. He, W.-Y. & Lee, P. A. Electronic density of states of a U(1) quantum spin liquid with spinon Fermi surface. I. Orbital magnetic field effects. Phys. Rev. B 107, 195155 (2023).

    ADS  CAS  Google Scholar 

  77. Zhou, Y., Kanoda, K. & Ng, T.-K. Quantum spin liquid states. Rev. Mod. Phys. 89, 025003 (2017).

    ADS  MathSciNet  Google Scholar 

  78. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    CAS  PubMed  Google Scholar 

  79. Knolle, J. & Moessner, R. A field guide to spin liquids. Annu. Rev. Condens. Matter Phys. 10, 451–472 (2019).

    ADS  CAS  Google Scholar 

  80. Takagi, H., Takayama, T., Jackeli, G., Khaliullin, G. & Nagler, S. E. Concept and realization of Kitaev quantum spin liquids. Nat. Rev. Phys. 1, 264–280 (2019).

    Google Scholar 

  81. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    ADS  PubMed  Google Scholar 

  82. Law, K. T. & Lee, P. A. 1T-TaS2 as a quantum spin liquid. Proc. Natl Acad. Sci. USA 114, 6996–7000 (2017).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. He, W.-Y., Xu, X. Y., Chen, G., Law, K. T. & Lee, P. A. Spinon Fermi surface in a cluster Mott insulator model on a triangular lattice and possible application to 1T-TaS2. Phys. Rev. Lett. 121, 046401 (2018).

    ADS  CAS  PubMed  Google Scholar 

  84. Sipos, B. et al. From Mott state to superconductivity in 1T-TaS2. Nat. Mater. 7, 960–965 (2008).

    ADS  CAS  PubMed  Google Scholar 

  85. Yu, Y. et al. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10, 270–276 (2015).

    ADS  CAS  PubMed  Google Scholar 

  86. Wang, Y. D. et al. Band insulator to Mott insulator transition in 1T-TaS2. Nat. Commun. 11, 4215 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Ritschel, T., Berger, H. & Geck, J. Stacking-driven gap formation in layered 1T-TaS2. Phys. Rev. B 98, 195134 (2018).

    ADS  CAS  Google Scholar 

  88. Wu, Z. et al. Effect of stacking order on the electronic state of 1T-TaS2. Phys. Rev. B 105, 035109 (2022).

    ADS  MathSciNet  CAS  Google Scholar 

  89. Chen, Y. et al. Strong correlations and orbital texture in single-layer 1T-TaSe2. Nat. Phys. 16, 218–224 (2020).

    CAS  Google Scholar 

  90. Ruan, W. et al. Evidence for quantum spin liquid behaviour in single-layer 1T-TaSe2 from scanning tunnelling microscopy. Nat. Phys. 17, 1154–1161 (2021).

    CAS  Google Scholar 

  91. Chen, Y. et al. Evidence for a spinon Kondo effect in cobalt atoms on single-layer 1T-TaSe2. Nat. Phys. 18, 1335–1340 (2022).

    CAS  Google Scholar 

  92. Zhang, Q. et al. Quantum spin liquid signatures in monolayer 1T-NbSe2. Nat. Commun. 15, 2336 (2024).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Liu, L. et al. Direct identification of Mott Hubbard band pattern beyond charge density wave superlattice in monolayer 1T-NbSe2. Nat. Commun. 12, 1978 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Liu, M. et al. Monolayer 1T-NbSe2 as a 2D-correlated magnetic insulator. Sci. Adv. 7, eabi6339 (2021).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  95. Nakata, Y. et al. Monolayer 1T-NbSe2 as a Mott insulator. NPG Asia Mater. 8, e321–e321 (2016).

    CAS  Google Scholar 

  96. Kitaev, A. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006). This paper provided an exactly solvable model for quantum spin liquids.

    ADS  MathSciNet  CAS  Google Scholar 

  97. Jackeli, G. & Khaliullin, G. Mott insulators in the strong spin-orbit coupling limit: from Heisenberg to a quantum compass and Kitaev models. Phys. Rev. Lett. 102, 017205 (2009).

    ADS  CAS  PubMed  Google Scholar 

  98. Banerjee, A. et al. Proximate Kitaev quantum spin liquid behaviour in a honeycomb magnet. Nat. Mater. 15, 733–740 (2016).

    ADS  CAS  PubMed  Google Scholar 

  99. Plumb, K. W. et al. α-RuCl3: a spin-orbit assisted Mott insulator on a honeycomb lattice. Phys. Rev. B 90, 041112 (2014).

    ADS  CAS  Google Scholar 

  100. Leahy, I. A. et al. Anomalous thermal conductivity and magnetic torque response in the honeycomb magnet α-RuCl3. Phys. Rev. Lett. 118, 187203 (2017).

    ADS  PubMed  Google Scholar 

  101. Banerjee, A. et al. Excitations in the field-induced quantum spin liquid state of α-RuCl3. npj Quantum Mater. 3, 8 (2018).

    ADS  Google Scholar 

  102. Hentrich, R. et al. Unusual phonon heat transport in α-RuCl3: strong spin-phonon scattering and field-induced spin gap. Phys. Rev. Lett. 120, 117204 (2018).

    ADS  CAS  PubMed  Google Scholar 

  103. McClarty, P. A. et al. Topological magnons in Kitaev magnets at high fields. Phys. Rev. B 98, 060404 (2018).

    ADS  CAS  Google Scholar 

  104. Joshi, D. G. Topological excitations in the ferromagnetic Kitaev-Heisenberg model. Phys. Rev. B 98, 060405 (2018).

    ADS  CAS  Google Scholar 

  105. Gordon, J. S., Catuneanu, A., Sørensen, E. S. & Kee, H.-Y. Theory of the field-revealed Kitaev spin liquid. Nat. Commun. 10, 2470 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  106. Hickey, C. & Trebst, S. Emergence of a field-driven U(1) spin liquid in the Kitaev honeycomb model. Nat. Commun. 10, 530 (2019).

    ADS  PubMed  PubMed Central  Google Scholar 

  107. Ponomaryov, A. N. et al. Nature of magnetic excitations in the high-field phase of α-RuCl3. Phys. Rev. Lett. 125, 037202 (2020).

    ADS  CAS  PubMed  Google Scholar 

  108. Wang, Z. et al. Magnetic excitations and continuum of a possibly field-induced quantum spin liquid in α-RuCl3. Phys. Rev. Lett. 119, 227202 (2017).

    ADS  PubMed  Google Scholar 

  109. Czajka, P. et al. Planar thermal Hall effect of topological bosons in the Kitaev magnet α-RuCl3. Nat. Mater. 22, 36–41 (2023). This paper reported the thermal Hall data incompatible with the half-quantization expected for the Majorana transport in α-RuCl3.

    ADS  CAS  PubMed  Google Scholar 

  110. Czajka, P. et al. Oscillations of the thermal conductivity in the spin-liquid state of α-RuCl3. Nat. Phys. 17, 915–919 (2021). This paper reported the magneto-oscillations in the thermal conductivity of α-RuCl3.

    CAS  Google Scholar 

  111. Kasahara, Y. et al. Majorana quantization and half-integer thermal quantum Hall effect in a Kitaev spin liquid. Nature 559, 227–231 (2018).

    ADS  CAS  PubMed  Google Scholar 

  112. Yokoi, T. et al. Half-integer quantized anomalous thermal Hall effect in the Kitaev material candidate α-RuCl3. Science 373, 568–572 (2021).

    ADS  MathSciNet  CAS  PubMed  Google Scholar 

  113. Zhang, E. Z., Chern, L. E. & Kim, Y. B. Topological magnons for thermal Hall transport in frustrated magnets with bond-dependent interactions. Phys. Rev. B 103, 174402 (2021).

    ADS  CAS  Google Scholar 

  114. Bruin, J. A. N. et al. Robustness of the thermal Hall effect close to half-quantization in α-RuCl3. Nat. Phys. 18, 401–405 (2022).

    CAS  Google Scholar 

  115. Villadiego, I. S. Pseudoscalar U(1) spin liquids in α-RuCl3. Phys. Rev. B 104, 195149 (2021).

    ADS  CAS  Google Scholar 

  116. Bruin, J. A. N. et al. Origin of oscillatory structures in the magnetothermal conductivity of the putative Kitaev magnet α-RuCl3. APL Mater. 10, 090703 (2022).

  117. Kubota, Y., Tanaka, H., Ono, T., Narumi, Y. & Kindo, K. Successive magnetic phase transitions in α-RuCl3: XY-like frustrated magnet on the honeycomb lattice. Phys. Rev. B 91, 094422 (2015).

    ADS  Google Scholar 

  118. Cao, H. B. et al. Low-temperature crystal and magnetic structure of α-RuCl3. Phys. Rev. B 93, 134423 (2016).

    ADS  Google Scholar 

  119. Lefrançois, É. et al. Oscillations in the magnetothermal conductivity of α−RuCl3: evidence of transition anomalies. Phys. Rev. B 107, 064408 (2023).

    ADS  Google Scholar 

  120. Zhang, H. et al. Sample-dependent and sample-independent thermal transport properties of α-RuCl3. Phys. Rev. Mater. 7, 114403 (2023).

    CAS  Google Scholar 

  121. Zhang, H. et al. Stacking disorder and thermal transport properties of α-RuCl3. Phys. Rev. Mater. 8, 014402 (2024).

    CAS  Google Scholar 

  122. Zhang, H. et al. Anisotropy of thermal conductivity oscillations in relation to the Kitaev spin liquid phase. Preprint at https://arxiv.org/abs/2310.03917 (2023).

  123. Hong, X. et al. Phonon thermal transport shaped by strong spin-phonon scattering in a Kitaev material Na2Co2TeO6. npj Quantum Mater. 9, 18 (2024).

    ADS  CAS  Google Scholar 

  124. Hong, X. et al. Spinon heat transport in the three-dimensional quantum magnet PbCuTe2O6. Phys. Rev. Lett. 131, 256701 (2023).

    ADS  CAS  PubMed  Google Scholar 

  125. Yamashita, M. et al. Presence and absence of itinerant gapless excitations in the quantum spin liquid candidate EtMe2Sb[Pd(dmit)2]2. Phys. Rev. B 101, 140407 (2020).

    ADS  CAS  Google Scholar 

  126. Ni, J. M. et al. Absence of magnetic thermal conductivity in the quantum spin liquid candidate EtNe3Sb[Pd(dmit)2]2. Phys. Rev. Lett. 123, 247204 (2019).

    ADS  CAS  PubMed  Google Scholar 

  127. Bourgeois-Hope, P. et al. Thermal conductivity of the quantum spin liquid candidate EtMe3Sb[Pd(dnit)2]2: no evidence of mobile gapless excitations. Phys. Rev. X 9, 041051 (2019).

    CAS  Google Scholar 

  128. Ioffe, L. B. & Larkin, A. I. Gapless fermions and gauge fields in dielectrics. Phys. Rev. B 39, 8988–8999 (1989). This paper developed the so-called Ioffe-Larkin rule, which is important for understanding response functions of fractionalized systems.

    ADS  CAS  Google Scholar 

  129. Lee, P. A. & Nagaosa, N. Gauge theory of the normal state of high-Tc superconductors. Phys. Rev. B 46, 5621–5639 (1992).

    ADS  CAS  Google Scholar 

  130. He, W.-Y. & Lee, P. A. Electronic density of states of a U1 quantum spin liquid with spinon Fermi surface. I. Orbital magnetic field effects. Phys. Rev. B 107, 195155 (2023).

    ADS  CAS  Google Scholar 

  131. Tan, B. S. et al. Unconventional Fermi surface in an insulating state. Science 349, 287–290 (2015).

    ADS  CAS  PubMed  Google Scholar 

  132. Li, G. et al. Two-dimensional Fermi surfaces in Kondo insulator SmB6. Science 346, 1208–1212 (2014).

    ADS  CAS  PubMed  Google Scholar 

  133. Xiang, Z. et al. Quantum oscillations of electrical resistivity in an insulator. Science 362, 65–69 (2018).

    ADS  CAS  PubMed  Google Scholar 

  134. Han, Z., Li, T., Zhang, L., Sullivan, G. & Du, R.-R. Anomalous conductance oscillations in the hybridization gap of InAs/GaSb quantum wells. Phys. Rev. Lett. 123, 126803 (2019).

    ADS  CAS  PubMed  Google Scholar 

  135. Xiao, D., Liu, C.-X., Samarth, N. & Hu, L.-H. Anomalous quantum oscillations of interacting electron-hole gases in inverted type-II InAs/GaSb quantum wells. Phys. Rev. Lett. 122, 186802 (2019).

    ADS  CAS  PubMed  Google Scholar 

  136. Zheng, G. et al. Unconventional magnetic oscillations in Kagome Mott insulators. Preprint at arXiv https://arxiv.org/abs/2310.07989 (2023).

  137. Li, L., Sun, K., Kurdak, C. & Allen, J. W. Emergent mystery in the Kondo insulator samarium hexaboride. Nat. Rev. Phys. 2, 463–479 (2020).

    CAS  Google Scholar 

  138. Shen, H. & Fu, L. Quantum oscillation from in-gap states and a non-Hermitian Landau level problem. Phys. Rev. Lett. 121, 026403 (2018).

    ADS  CAS  PubMed  Google Scholar 

  139. Zhang, L., Song, X.-Y. & Wang, F. Quantum oscillation in narrow-gap topological insulators. Phys. Rev. Lett. 116, 046404 (2016).

    ADS  PubMed  Google Scholar 

  140. Ram, P. & Kumar, B. Theory of quantum oscillations of magnetization in Kondo insulators. Phys. Rev. B 96, 075115 (2017).

    ADS  Google Scholar 

  141. Knolle, J. & Cooper, N. R. Quantum oscillations without a Fermi surface and the anomalous de Haas–van Alphen effect. Phys. Rev. Lett. 115, 146401 (2015).

    ADS  PubMed  Google Scholar 

  142. Knolle, J. & Cooper, N. R. Anomalous de Haas–van Alphen effect in InAs/GaSb quantum wells. Phys. Rev. Lett. 118, 176801 (2017).

    ADS  PubMed  Google Scholar 

  143. Erten, O., Chang, P.-Y., Coleman, P. & Tsvelik, A. M. Skyrme insulators: insulators at the brink of superconductivity. Phys. Rev. Lett. 119, 057603 (2017).

    ADS  PubMed  Google Scholar 

  144. He, W.-Y. & Lee, P. A. Quantum oscillation of thermally activated conductivity in a monolayer WTe2-like excitonic insulator. Phys. Rev. B 104, L041110 (2021).

    ADS  CAS  Google Scholar 

  145. Zhu, J., Li, T., Young, A. F., Shan, J. & Mak, K. F. Quantum oscillations in 2D insulators induced by graphite gates. Phys. Rev. Lett. 127, 247702 (2021).

    ADS  CAS  PubMed  Google Scholar 

  146. Cooper, N. R. & Kelsall, J. Quantum oscillations in an impurity-band Anderson insulator. Sci. Post Phys.15, 118 (2023).

    ADS  MathSciNet  Google Scholar 

  147. Pirie, H. et al. Visualizing the atomic-scale origin of metallic behavior in Kondo insulators. Science 379, 1214–1218 (2023).

    ADS  CAS  PubMed  Google Scholar 

  148. Pal, H. K., Piéchon, F., Fuchs, J.-N., Goerbig, M. & Montambaux, G. Chemical potential asymmetry and quantum oscillations in insulators. Phys. Rev. B 94, 125140 (2016).

    ADS  Google Scholar 

  149. Singh, G. & Pal, H. K. Effect of many-body interaction on de Haas–van Alphen oscillations in insulators. Phys. Rev. B 108, L201103 (2023).

    ADS  CAS  Google Scholar 

  150. Wu, S. The detection of unconventional quantum oscillations in insulating 2D materials. 2D Mater. 11, 033004 (2024).

    Google Scholar 

  151. Checkelsky, J. G. & Ong, N. P. Thermopower and Nernst effect in graphene in a magnetic field. Phys. Rev. B 80, 81413 (2009).

    ADS  Google Scholar 

  152. Zuev, Y. M., Chang, W. & Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 102, 96807 (2009).

    ADS  Google Scholar 

  153. Ni, D., Gui, X., Powderly, K. M. & Cava, R. J. Honeycomb‐structure RuI3, a new quantum material related to α‐RuCl3. Adv. Mater. 34, e2106831 (2022).

  154. Zhong, R., Gao, T., Ong, N. P. & Cava, R. J. Weak-field induced nonmagnetic state in a Co-based honeycomb. Sci. Adv. 6, eaay6953 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang, X. et al. A magnetic continuum in the cobalt-based honeycomb magnet BaCo2(AsO4)2. Nat. Mater. 22, 58–63 (2023).

    ADS  PubMed  Google Scholar 

  156. Halloran, T. et al. Geometrical frustration versus Kitaev interactions in BaCo2(AsO4)2. Proc. Natl Acad. Sci. USA 120, e2215509119 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Onyszczak, M. et al. A platform for far-infrared spectroscopy of quantum materials at millikelvin temperatures. Rev. Sci. Instrum. 94, 103903 (2023).

    ADS  CAS  PubMed  Google Scholar 

  158. Potter, A. C., Senthil, T. & Lee, P. A. Mechanisms for sub-gap optical conductivity in Herbertsmithite. Phys. Rev. B 87, 245106 (2013).

    ADS  Google Scholar 

  159. Wan, Y. & Armitage, N. P. Resolving continua of fractional excitations by spinon echo in THz 2D coherent spectroscopy. Phys. Rev. Lett. 122, 257401 (2019).

    ADS  CAS  PubMed  Google Scholar 

  160. Hart, O. & Nandkishore, R. Extracting spinon self-energies from two-dimensional coherent spectroscopy. Phys. Rev. B 107, 205143 (2023).

    ADS  CAS  Google Scholar 

  161. Gao, Q., Liu, Y., Liao, H. & Wan, Y. Two-dimensional coherent spectrum of interacting spinons from matrix product states. Phys. Rev. B 107, 165121 (2023).

    ADS  CAS  Google Scholar 

  162. Chatterjee, S., Rodriguez-Nieva, J. F. & Demler, E. Diagnosing phases of magnetic insulators via noise magnetometry with spin qubits. Phys. Rev. B 99, 104425 (2019).

    ADS  CAS  Google Scholar 

  163. Khoo, J. Y., Pientka, F. & Sodemann, I. The universal shear conductivity of Fermi liquids and spinon Fermi surface states and its detection via spin qubit noise magnetometry. New J. Phys. 23, 113009 (2021).

    ADS  CAS  Google Scholar 

  164. Lee, P. A. & Morampudi, S. Proposal to detect emergent gauge field and its Meissner effect in spin liquids using NV centers. Phys. Rev. B 107, 195102 (2023).

    ADS  CAS  Google Scholar 

  165. Han, W., Maekawa, S. & Xie, X.-C. Spin current as a probe of quantum materials. Nat. Mater. 19, 139–152 (2020).

    ADS  CAS  PubMed  Google Scholar 

  166. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023). This paper reported the fractional quantum anomalous Hall effect.

    ADS  CAS  PubMed  Google Scholar 

  167. Xu, F. et al. Observation of integer and fractional quantum anomalous Hall effects in twisted bilayer MoTe2. Phys. Rev. X 13, 031037 (2023).

    CAS  Google Scholar 

  168. Lu, Z. et al. Fractional quantum anomalous Hall effect in multilayer graphene. Nature 626, 759–764 (2024).

    ADS  CAS  PubMed  Google Scholar 

  169. Anderson, E. et al. Programming correlated magnetic states with gate-controlled moiré geometry. Science 381, 325–330 (2023).

    ADS  CAS  PubMed  Google Scholar 

  170. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2. Nature 622, 63–68 (2023).

    ADS  CAS  PubMed  Google Scholar 

  171. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

    ADS  CAS  PubMed  Google Scholar 

  172. Neupert, T., Santos, L., Chamon, C. & Mudry, C. Fractional quantum Hall states at zero magnetic field. Phys. Rev. Lett. 106, 236804 (2011).

    ADS  PubMed  Google Scholar 

  173. Sheng, D. N., Gu, Z.-C., Sun, K. & Sheng, L. Fractional quantum Hall effect in the absence of Landau levels. Nat. Commun. 2, 389 (2011).

    ADS  CAS  PubMed  Google Scholar 

  174. Regnault, N. & Bernevig, B. A. Fractional Chern insulator. Phys. Rev. X 1, 021014 (2011).

    Google Scholar 

  175. Tang, E., Mei, J.-W. & Wen, X.-G. High-temperature fractional quantum Hall states. Phys. Rev. Lett. 106, 236802 (2011).

    ADS  PubMed  Google Scholar 

  176. Sun, K., Gu, Z., Katsura, H. & Das Sarma, S. Nearly flatbands with nontrivial topology. Phys. Rev. Lett. 106, 236803 (2011).

    ADS  PubMed  Google Scholar 

  177. Baird, D., Hughes, R. I. G. & Nordmann, A. Heinrich Hertz: Classical Physicist, Modern Philosopher (Springer-Verlag, 1998).

  178. Laumann, C. R. & Moessner, R. Hybrid dyons, inverted Lorentz force, and magnetic Nernst effect in quantum spin ice. Phys. Rev. B 108, L220402 (2023). This paper predicted a novel variant of the Nernst effect in insulators induced by physics of quantum spin ice.

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

S.W. acknowledges support from Gordon and Betty Moore Foundation’s EPiQS Initiative grant no. GBMF11946, AFOSR through a Young Investigator Award (grant no. FA9550-23-1-0140), ONR through a Young Investigator Award (grant no. N00014-21-1-2804), NSF through a CAREER award (grant no. DMR-1942942) and the Sloan Foundation. N.P.O., R.J.C., L.M.S. and S.W. acknowledge support from the Materials Research Science and Engineering Center programme of the NSF (grant no. DMR-2011750). N.P.O. acknowledges support from the United States Department of Energy (grant no. DE-SC0017863) (which supported the κxy experiments on α-RuCl3) and the Gordon and Betty Moore Foundation through grant no. GBMF9466. L.M.S. acknowledges support from the Gordon and Betty Moore Foundation through grant no. GBMF9064 and the David and Lucile Packard Foundation. S.W. and L.M.S. acknowledge support from the Eric and Wendy Schmidt Transformative Technology Fund at Princeton. The research on forefront electronic materials in the laboratory of R.J.C. at Princeton is supported by the Gordon and Betty Moore Foundation through grant GBMF-9066 and the US DOE division of Basic Energy Sciences (grant no. DE-FG02-98R45706). I.S. acknowledges support from the Deutsche Forschungsgemeinschaft through research grant project numbers 542614019 and 518372354. R.M. acknowledges funding by the Deutsche Forschungsgemeinschaft under grants SFB 1143 (project-id 247310070) and the cluster of excellence ct.qmat (grant no. EXC 2147, project-id 390858490).

Author information

Authors and Affiliations

Authors

Contributions

S.W. and N.P.O. initiated the work. I.S. and R.M. wrote the theory parts. S.W., N.P.O., R.J.C. and L.M.S. wrote the experimental parts. All authors discussed and contributed to the overall writing and revisions of this work.

Corresponding authors

Correspondence to Sanfeng Wu or N. P. Ong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, S., Schoop, L.M., Sodemann, I. et al. Charge-neutral electronic excitations in quantum insulators. Nature 635, 301–310 (2024). https://doi.org/10.1038/s41586-024-08091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08091-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing