Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photocatalytic low-temperature defluorination of PFASs

Abstract

Polyfluoroalkyl and perfluoroalkyl substances (PFASs) are found in many everyday consumer products, often because of their high thermal and chemical stabilities, as well as their hydrophobic and oleophobic properties1. However, the inert carbon–fluorine (C–F) bonds that give PFASs their properties also provide resistance to decomposition through defluorination, leading to long-term persistence in the environment, as well as in the human body, raising substantial safety and health concerns1,2,3,4,5. Despite recent advances in non-incineration approaches for the destruction of functionalized PFASs, processes for the recycling of perfluorocarbons (PFCs) as well as polymeric PFASs such as polytetrafluoroethylene (PTFE) are limited to methods that use either elevated temperatures or strong reducing reagents. Here we report the defluorination of PFASs with a highly twisted carbazole-cored super-photoreductant KQGZ. A series of PFASs could be defluorinated photocatalytically at 40–60 °C. PTFE gave amorphous carbon and fluoride salts as the major products. Oligomeric PFASs such as PFCs, perfluorooctane sulfonic acid (PFOS), polyfluorooctanoic acid (PFOA) and derivatives give carbonate, formate, oxalate and trifluoroacetate as the defluorinated products. This allows for the recycling of fluorine in PFASs as inorganic fluoride salt. The mechanistic investigation reveals the difference in reaction behaviour and product components for PTFE and oligomeric PFASs. This work opens a window for the low-temperature photoreductive defluorination of the ‘forever chemicals’ PFASs, especially for PTFE, as well as the discovery of new super-photoreductants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Photocatalytic reductive defluorination of PTFE.
Fig. 2: Characterization and quantification of the PTFE defluorination products.
Fig. 3: Investigations on the defluorination of PFASs.
Fig. 4: Control experiments.
Fig. 5: Proposed mechanism.

Similar content being viewed by others

Data availability

All data are available in the main text or the supplementary materials.

References

  1. Evich, M. G. et al. Per- and polyfluoroalkyl substances in the environment. Science 375, eabg9065 (2022).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  2. Washington, J. W. et al. Nontargeted mass-spectral detection of chloroperfluoropolyether carboxylates in New Jersey soils. Science 368, 1103–1107 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  3. Singh, K., Kumar, N., Yadav, A. K., Singh, R. & Kumar, K. Per- and polyfluoroalkyl substances (PFAS) as a health hazard: current state of knowledge and strategies in environmental settings across Asia and future perspectives. Chem. Eng. J. 475, 145065 (2023).

    Article  MATH  Google Scholar 

  4. Sunderland, E. M. et al. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J. Expo. Sci. Environ. Epidemiol. 29, 131–147 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Gaballah, S. et al. Evaluation of developmental toxicity, developmental neurotoxicity, and tissue dose in zebrafish exposed to GenX and other PFAS. Environ. Health Perspect. 128, 047005 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  6. Bentel, M. J. et al. Defluorination of per- and polyfluoroalkyl substances (PFASs) with hydrated electrons: structural dependence and implications to PFAS remediation and management. Environ. Sci. Technol. 53, 3718–3728 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  7. Bentel, M. J. et al. Degradation of perfluoroalkyl ether carboxylic acids with hydrated electrons: structure–reactivity relationships and environmental implications. Environ. Sci. Technol. 54, 2489–2499 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  8. Liu, Z. et al. Accelerated degradation of perfluorosulfonates and perfluorocarboxylates by UV/sulfite + iodide: reaction mechanisms and system efficiencies. Environ. Sci. Technol. 56, 3699–3709 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  9. Gao, J. et al. Photochemical degradation pathways and near-complete defluorination of chlorinated polyfluoroalkyl substances. Nat. Water 1, 381–390 (2023).

    Article  ADS  CAS  MATH  Google Scholar 

  10. Hao, S. et al. Hydrothermal alkaline treatment for destruction of per- and polyfluoroalkyl substances in aqueous film-forming foam. Environ. Sci. Technol. 55, 3283–3295 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  11. Yang, N. et al. Solvent-free nonthermal destruction of PFAS chemicals and PFAS in sediment by piezoelectric ball milling. Environ. Sci. Technol. Lett. 10, 198–203 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  12. Schaefer, C. E. et al. Electrochemical transformations of perfluoroalkyl acid (PFAA) precursors and PFAAs in groundwater impacted with aqueous film forming foams. Environ. Sci. Technol. 52, 10689–10697 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  13. Singh, R. K. et al. Rapid removal of poly- and perfluorinated compounds from investigation-derived waste (IDW) in a pilot-scale plasma reactor. Environ. Sci. Technol. 53, 11375–11382 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  14. Baumgartner, R., Stieger, G. K. & McNeill, K. Complete hydrodehalogenation of polyfluorinated and other polyhalogenated benzenes under mild catalytic conditions. Environ. Sci. Technol. 47, 6545–6553 (2013).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  15. Douvris, C. & Ozerov, O. V. Hydrodefluorination of perfluoroalkyl groups using silylium-carborane catalysts. Science 321, 1188–1190 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Trang, B. et al. Low-temperature mineralization of perfluorocarboxylic acids. Science 377, 839–845 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  17. Puts, G. J., Crouse, P. & Ameduri, B. M. Polytetrafluoroethylene: synthesis and characterization of the original extreme polymer. Chem. Rev. 119, 1763–1805 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  18. Améduri, B. & Hori, H. Recycling and the end of life assessment of fluoropolymers: recent developments, challenges and future trends. Chem. Soc. Rev. 52, 4208–4247 (2023).

    Article  PubMed  MATH  Google Scholar 

  19. Yang, X. et al. A chemical route from PTFE to amorphous carbon nanospheres in supercritical water. Chem. Commun. 342–343 (2004).

  20. Simon, C. M. & Kaminsky, W. Chemical recycling of polytetrafluoroethylene by pyrolysis. Polym. Degrad. Stab. 62, 1–7 (1998).

    Article  CAS  MATH  Google Scholar 

  21. Ellis, D. A., Mabury, S. A., Martin, J. W. & Muir, D. C. G. Thermolysis of fluoropolymers as a potential source of halogenated organic acids in the environment. Nature 412, 321–324 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Koch, E.-C. Metal‐Fluorocarbon Based Energetic Materials (Wiley, 2011).

  23. Nelson, E., Kilduff, T. J. & Benderly, A. A. Bonding of Teflon. Ind. Eng. Chem. 50, 329–330 (1958).

    Article  CAS  Google Scholar 

  24. Yoshino, K. et al. Conducting polymer prepared from teflon. Jpn. J. Appl. Phys. 21, L301–L302 (1982).

    Article  MATH  Google Scholar 

  25. Chakrabarti, N. & Jacobus, J. The chemical reduction of poly(tetrafluoroethylene). Macromolecules 21, 3011–3014 (1988).

    Article  ADS  CAS  MATH  Google Scholar 

  26. Costello, C. A. & McCarthy, T. J. Surface modification of poly(tetrafluoroethylene) with benzoin dianion. Macromolecules 17, 2940–2942 (1984).

    Article  ADS  CAS  MATH  Google Scholar 

  27. Costello, C. A. & McCarthy, T. J. Surface-selective introduction of specific functionalities onto poly(tetrafluoroethylene). Macromolecules 20, 2819–2828 (1987).

    Article  ADS  CAS  MATH  Google Scholar 

  28. Kavan, L., Dousek, F. P., Janda, P. & Weber, J. Carbonization of highly oriented poly(tetrafluoroethylene). Chem. Mater. 11, 329–335 (1999).

    Article  CAS  Google Scholar 

  29. Sheldon, D. J., Parr, J. M. & Crimmin, M. R. Room temperature defluorination of poly(tetrafluoroethylene) by a magnesium reagent. J. Am. Chem. Soc. 145, 10486–10490 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  30. Wu, Y., Kim, D. & Teets, T. S. Photophysical properties and redox potentials of photosensitizers for organic photoredox transformations. Synlett 33, 1154–1179 (2022).

    Article  CAS  MATH  Google Scholar 

  31. Liang, K. et al. Intermolecular oxyarylation of olefins with aryl halides and TEMPOH catalyzed by the phenolate anion under visible light. Chem. Sci. 11, 6996–7002 (2020).

    Article  CAS  MATH  Google Scholar 

  32. Kim, H., Kim, H., Lambert, T. H. & Lin, S. Reductive electrophotocatalysis: merging electricity and light to achieve extreme reduction potential. J. Am. Chem. Soc. 142, 2087–2092 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  33. Wu, S., Schiel, F. & Melchiorre, P. A general light-driven organocatalytic platform for the activation of inert substrates. Angew. Chem. Int. Ed. 62, e202306364 (2023).

    Article  CAS  Google Scholar 

  34. Halder, S., Mandal, S., Kundu, A., Mandal, B. & Adhikari, D. Super-reducing behavior of benzo[b]phenothiazine anion under visible-light photoredox condition. J. Am. Chem. Soc. 145, 22403–22412 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  35. MacKenzie, I. A. et al. Discovery and characterization of an acridine radical photoreductant. Nature 580, 76–81 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  36. Cole, J. P. et al. Organocatalyzed birch reduction driven by visible light. J. Am. Chem. Soc. 142, 13573–13581 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiao, Z. F. et al. Iridium-catalyzed cyclization of isoxazolines and alkenes: divergent access to pyrrolidines, pyrroles, and carbazoles. Org. Lett. 18, 5672–5675 (2016).

    Article  CAS  PubMed  MATH  Google Scholar 

  38. Luan, Z. H., Qu, J. P. & Kang, Y. B. Discovery of oxygen α-nucleophilic addition to α,β-unsaturated amides catalyzed by redox-neutral organic photoreductant. J. Am. Chem. Soc. 142, 20942–20947 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Wang, S. D., Yang, B., Zhang, H., Qu, J. P. & Kang, Y. B. Reductive cleavage of C–X or N–S bonds catalyzed by super organoreductant CBZ6. Org. Lett. 25, 816–820 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Yabuta, T., Hayashi, M. & Matsubara, R. Photocatalytic reductive C–O bond cleavage of alkyl aryl ethers by using carbazole catalysts with cesium carbonate. J. Org. Chem. 86, 2545–2555 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Sap, J. B. I. et al. Organophotoredox hydrodefluorination of trifluoromethylarenes with translational applicability to drug discovery. J. Am. Chem. Soc. 142, 9181–9187 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  42. Chen, K., Berg, N., Gschwind, R. & König, B. Selective single C(sp3)–F bond cleavage in trifluoromethylarenes: merging visible-light catalysis with Lewis acid activation. J. Am. Chem. Soc. 139, 18444–18447 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Wang, H. & Jui, N. T. Catalytic defluoroalkylation of trifluoromethylaromatics with unactivated alkenes. J. Am. Chem. Soc. 140, 163–166 (2018).

    Article  PubMed  MATH  Google Scholar 

  44. Picheau, E., Amar, S., Derré, A., Pénicaud, A. & Hof, F. An introduction to the combustion of carbon materials. Chem. Eur. J. 28, e202200117 (2022).

    Article  CAS  PubMed  Google Scholar 

  45. Patrick, J. S., Pradeep, T., Luo, H., Ma, S. & Cooks, R. G. Gas-phase C-F bond cleavage in perfluorohexane using W-, Si-, P-, Br-, and I-containing ions: comparisons with reactions at fluorocarbon surfaces. J. Am. Soc. Mass. Spectrom. 9, 1158–1167 (1998).

    Article  ADS  CAS  Google Scholar 

  46. Vogt, D. B., Seath, C. P., Wang, H. & Jui, N. T. Selective C–F functionalization of unactivated trifluoromethylarenes. J. Am. Chem. Soc. 141, 13203–13211 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Campbell, M. W. et al. Photochemical C–F activation enables defluorinative alkylation of trifluoroacetates and -acetamides. J. Am. Chem. Soc. 143, 19648–19654 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye, J. H., Bellotti, P., Heusel, C. & Glorius, F. Photoredox-catalyzed defluorinative functionalizations of polyfluorinated aliphatic amides and esters. Angew. Chem. Int. Ed. 61, e202115456 (2022).

    Article  ADS  CAS  Google Scholar 

  49. Nagai, Y., Smith, R. L.Jr., Inomata, H. & Arai, K. Direct observation of polyvinylchloride degradation in water at temperatures up to 500°C and at pressures up to 700 MPa. J. Appl. Polym. Sci. 106, 1075–1086 (2007).

    Article  CAS  MATH  Google Scholar 

  50. Campbell, S. F., Stephens, R. & Tatlow, J. C. Perfluorocycloalkenyl-lithium compounds. Chem. Commun. 151–152 (1967).

Download references

Acknowledgements

This paper is dedicated to Yong Tang at Shanghai institute of Organic Chemistry on the occasion of his 60th birthday. We appreciate the financial support from the National Key R&D Program of China (no. 2021YFA1500100) and the National Natural Science Foundation of China (22271268). We thank Q. Li at the University of Science and Technology of China for assistance with the X-ray photoelectron spectroscopy measurements and characterizations. We thank K. Gong at the University of Science and Technology of China for helpful discussions about solid-state magic-angle spinning nuclear magnetic resonance characterizations.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. performed all experiments and analysed the data in the main text and supplementary information, with guidance from Y.-B.K. and J.-P.Q., unless otherwise stated. J.-X.C. assisted H.Z., synthesized the photocatalyst shown in Fig. 1 and performed the reactions in Fig. 4a,b and the analysis. Y.-B.K. and J.-P.Q. conceived the research, designed the experiments, supervised experiments and analyses, interpreted the data, generated figures and wrote the manuscript.

Corresponding authors

Correspondence to Jian-Ping Qu or Yan-Biao Kang.

Ethics declarations

Competing interests

A patent application has been filed by the University of Science and Technology of China on photocatalytic defluorination of polyfluoroalkyl and perfluoroalkyl substances.

Peer review

Peer review information

Nature thanks Jinyong Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Sections 1–16, including Supplementary Figs. 1–105, Supplementary Data and Supplementary References.

Supplementary Video 1

Combustion experiment of the defluorinated amorphous carbon product. The defluorinated amorphous carbon product sustains smouldering and stays red-hot without any flame when it is heated by an alcohol burner. The red-hot ember becomes a black solid when the alcohol burner is removed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Chen, JX., Qu, JP. et al. Photocatalytic low-temperature defluorination of PFASs. Nature 635, 610–617 (2024). https://doi.org/10.1038/s41586-024-08179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08179-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing