Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis of a semimetallic Weyl ferromagnet with point Fermi surface

Abstract

Quantum materials governed by emergent topological fermions have become a cornerstone of physics. Dirac fermions in graphene form the basis for moiré quantum matter and Dirac fermions in magnetic topological insulators enabled the discovery of the quantum anomalous Hall (QAH) effect1,2,3. By contrast, there are few materials whose electromagnetic response is dominated by emergent Weyl fermions4,5,6. Nearly all known Weyl materials are overwhelmingly metallic and are largely governed by irrelevant, conventional electrons. Here we theoretically predict and experimentally observe a semimetallic Weyl ferromagnet in van der Waals (Cr,Bi)2Te3. In transport, we find a record bulk anomalous Hall angle of greater than 0.5 along with non-metallic conductivity, a regime that is strongly distinct from conventional ferromagnets. Together with symmetry analysis, our data suggest a semimetallic Fermi surface composed of two Weyl points, with a giant separation of more than 75% of the linear dimension of the bulk Brillouin zone, and no other electronic states. Using state-of-the-art crystal-synthesis techniques, we widely tune the electronic structure, allowing us to annihilate the Weyl state and visualize a unique topological phase diagram exhibiting broad Chern insulating, Weyl semimetallic and magnetic semiconducting regions. Our observation of a semimetallic Weyl ferromagnet offers an avenue towards new correlated states and nonlinear phenomena, as well as zero-magnetic-field Weyl spintronic and optical devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Weyl transport semimetal in (Cr,Bi)2Te3.
Fig. 2: Tunability of a semimetallic Weyl state.
Fig. 3: Experimental visualization of the topological phase diagram.
Fig. 4: Large Weyl point separation and large anomalous Hall angle.

Similar content being viewed by others

Data availability

All data relevant to the conclusions of this study are available from Zenodo53.

References

  1. Anirban, A. 15 years of topological insulators. Nat. Rev. Phys. 5, 267 (2023).

    MATH  Google Scholar 

  2. Tokura, Y. Quantum materials at the crossroads of strong correlation and topology. Nat. Mater. 1, 971–973 (2022).

    ADS  MATH  Google Scholar 

  3. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Google Scholar 

  4. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    ADS  MathSciNet  CAS  MATH  Google Scholar 

  5. Hasan, M. Z. et al. Weyl, Dirac and high-fold chiral fermions in topological quantum matter. Nat. Rev. Mater. 6, 784–803 (2021).

    ADS  CAS  MATH  Google Scholar 

  6. Bernevig, B. A., Felser, C. & Beidenkopf, H. Progress and prospects in magnetic topological materials. Nature 603, 41–51 (2022).

    ADS  CAS  PubMed  MATH  Google Scholar 

  7. Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 281, 951–956 (1998).

    ADS  CAS  PubMed  MATH  Google Scholar 

  8. Santos-Cottin, D. et al. EuCd2As2: a magnetic semiconductor. Phys. Rev. Lett. 131, 186704 (2023).

    ADS  CAS  PubMed  Google Scholar 

  9. Guo, C. et al. Temperature dependence of quantum oscillations from non-parabolic dispersions. Nat. Commun. 12, 6213 (2021).

    ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  10. Belopolski, I. et al. Observation of a linked-loop quantum state in a topological magnet. Nature 604, 647–652 (2022).

    ADS  CAS  PubMed  MATH  Google Scholar 

  11. Collins, J. L. et al. Electric-field-tuned topological phase transition in ultrathin Na3Bi. Nature 564, 390–394 (2018).

    ADS  CAS  PubMed  MATH  Google Scholar 

  12. Osterhoudt, G. B. et al. Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019).

    ADS  CAS  PubMed  Google Scholar 

  13. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    ADS  CAS  PubMed  MATH  Google Scholar 

  14. Cheng, B. et al. Efficient terahertz harmonic generation with coherent acceleration of electrons in the Dirac semimetal Cd3As2. Phys. Rev. Lett. 124, 117402 (2020).

    ADS  CAS  PubMed  Google Scholar 

  15. Kovalev, S. et al. Non-perturbative terahertz high-harmonic generation in the three-dimensional Dirac semimetal Cd3As2. Nat. Commun. 11, 2451 (2020).

    ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  16. Baireuther, P., Tworzydło, J., Breitkreiz, M., Adagideli, I. & Beenakker, C. W. J. Weyl-Majorana solenoid. New J. Phys. 19, 025006 (2017).

    ADS  MATH  Google Scholar 

  17. Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    ADS  CAS  PubMed  MATH  Google Scholar 

  18. Mizuguchi, M. & Nakatsuji, S. Energy-harvesting materials based on the anomalous Nernst effect. Sci. Technol. Adv. Mater. 20, 262–275 (2019).

    CAS  PubMed  PubMed Central  MATH  Google Scholar 

  19. Rajamathi, C. R. et al. Weyl semimetals as hydrogen evolution catalysts. Adv. Mater. 29, 1606202 (2017).

    Google Scholar 

  20. Kotov, V. N., Uchoa, B., Pereira, V. M., Guinea, F. & Neto, A. H. C. Electron-electron interactions in graphene: current status and perspectives. Rev. Mod. Phys. 84, 1067–1125 (2012).

    ADS  CAS  MATH  Google Scholar 

  21. Elias, D. C. et al. Dirac cones reshaped by interaction effects in suspended graphene. Nat. Phys. 7, 701–704 (2011).

    CAS  MATH  Google Scholar 

  22. Witczak-Krempa, W., Knap, M. & Abanin, D. Interacting Weyl semimetals: characterization via the topological Hamiltonian and its breakdown. Phys. Rev. Lett. 113, 136402 (2014).

    ADS  PubMed  Google Scholar 

  23. Carlström, J. & Bergholtz, E. J. Strongly interacting Weyl semimetals: stability of the semimetallic phase and emergence of almost free fermions. Phys. Rev. B 98, 241102 (2018).

    ADS  MATH  Google Scholar 

  24. Isobe, H. & Nagaosa, N. Coulomb interaction effect in Weyl fermions with tilted energy dispersion in two dimensions. Phys. Rev. Lett. 116, 116803 (2016).

    ADS  PubMed  MATH  Google Scholar 

  25. Bulmash, D., Liu, C.-X. & Qi, X.-L. Prediction of a Weyl semimetal in Hg1−xyCdxMnyTe. Phys. Rev. B 89, 081106 (2014).

    ADS  MATH  Google Scholar 

  26. Xu, G., Weng, H., Wang, Z., Dai, X. & Fang, Z. Chern semimetal and the quantized anomalous Hall effect in HgCr2Se4. Phys. Rev. Lett. 107, 186806 (2011).

    ADS  PubMed  Google Scholar 

  27. Hasan, M. Z., Xu, S.-Y., Belopolski, I. & Huang, S.-M. Discovery of Weyl fermion semimetals and topological Fermi arc states. Annu. Rev. Condens. Matter Phys. 8, 289–309 (2017).

    ADS  CAS  MATH  Google Scholar 

  28. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011).

    ADS  CAS  PubMed  MATH  Google Scholar 

  29. Belopolski, I. et al. A novel artificial condensed matter lattice and a new platform for one-dimensional topological phases. Sci. Adv. 3, e1501692 (2017).

    ADS  PubMed  PubMed Central  Google Scholar 

  30. Murakami, S. Phase transition between the quantum spin Hall and insulator phases in 3D: emergence of a topological gapless phase. New J. Phys. 9, 356 (2007).

    ADS  MATH  Google Scholar 

  31. Nagaosa, N., Morimoto, T. & Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 5, 621–636 (2020).

    ADS  CAS  MATH  Google Scholar 

  32. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  33. Okazaki, Y. et al. Quantum anomalous Hall effect with a permanent magnet defines a quantum resistance standard. Nat. Phys. 18, 25–29 (2022).

    CAS  MATH  Google Scholar 

  34. Zhang, H. et al. Topological insulators in Bi2Se3, Bi2Te3 and Sb2Te3 with a single Dirac cone on the surface. Nat. Phys. 5, 438–442 (2009).

    CAS  MATH  Google Scholar 

  35. Liu, C.-X. et al. Model Hamiltonian for topological insulators. Phys. Rev. B 82, 045122 (2010).

    ADS  Google Scholar 

  36. Burkov, A. A. Anomalous Hall effect in Weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    ADS  CAS  PubMed  MATH  Google Scholar 

  37. Mogi, M. et al. Experimental signature of the parity anomaly in a semi-magnetic topological insulator. Nat. Phys. 18, 390–394 (2022).

    CAS  MATH  Google Scholar 

  38. Ong, N. P. & Liang, S. Experimental signatures of the chiral anomaly in Dirac–Weyl semimetals. Nat. Rev. Phys. 3, 394–404 (2021).

    MATH  Google Scholar 

  39. Kandala, A., Richardella, A., Kempinger, S., Liu, C.-X. & Samarth, N. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator. Nat. Commun. 6, 7434 (2015).

    ADS  PubMed  Google Scholar 

  40. Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac-Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    CAS  Google Scholar 

  41. Onoda, S., Sugimoto, N. & Nagaosa, N. Quantum transport theory of anomalous electric, thermoelectric, and thermal Hall effects in ferromagnets. Phys. Rev. B 77, 165103 (2008).

    ADS  MATH  Google Scholar 

  42. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    CAS  PubMed  PubMed Central  MATH  Google Scholar 

  44. Zhao, Y.-F. et al. Tuning the Chern number in quantum anomalous Hall insulators. Nature 588, 419–423 (2020).

    ADS  CAS  PubMed  MATH  Google Scholar 

  45. Lei, C., Chen, S. & MacDonald, A. H. Magnetized topological insulator multilayers. Proc. Natl Acad. Sci. 117, 27224–27230 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).

    ADS  MathSciNet  MATH  Google Scholar 

  47. Kresse, G. & Fürthmueller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    ADS  CAS  MATH  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    ADS  CAS  PubMed  Google Scholar 

  49. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    ADS  Google Scholar 

  50. Thouless, D. J., Kohmoto, M., Nightingale, M. P. & den Nijs, M. Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982).

    ADS  CAS  Google Scholar 

  51. Prodan, E., Hughes, T. L. & Bernevig, B. A. Entanglement spectrum of a disordered topological Chern insulator. Phys. Rev. Lett. 105, 115501 (2010).

    ADS  PubMed  MATH  Google Scholar 

  52. Lee, I. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl Acad. Sci. 112, 1316–1321 (2015).

    ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  53. Belopolski, I. et al. Source data for ‘Synthesis of a semimetallic Weyl ferromagnet with point Fermi surface’. Zenodo https://doi.org/10.5281/zenodo.13969155 (2025).

  54. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  MATH  Google Scholar 

Download references

Acknowledgements

I.B. acknowledges discussions on transport measurements with M. T. Birch and discussions about BaF2 substrates with M. Nakamura. I.B. acknowledges M. Hirschmann for insights on the theory. I.B. and R.Y. acknowledge film synthesis by T. Ueda. We acknowledge K. Manna for transport data on Co2MnGa, C. Zhang for transport data on TaAs and Y. Wang, S.-Y. Yang and M. Ali for anomalous Hall scaling data on reference materials. I.B. acknowledges discussions on Weyl physics with L. Tai, M. Mogi, H. Isobe, T. A. Cochran, D. S. Sanchez, Q. Ma, S.-Y. Xu, J. Checkelsky and K. Yasuda. We are grateful to all members of the RIKEN Center for Emergent Matter Science (CEMS) for discussions. This work was supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI grant 23H05431 (Y. Tokura), 24K17020 (Y.S.), 24H01607 (M.H.), 22H04958 (M. Kawasaki), 24H00197 (N.N.), 24H02231 (N.N.) and 23H01861 (M. Kawamura); and by the Japan Science and Technology Agency (JST) FOREST JPMJFR2238 (M.H.). N.N. was also supported by the RIKEN TRIP Initiative. C.-K.C. was supported by JST Presto grant JPMJPR2357 and partially supported by JST as part of Adopting Sustainable Partnerships for Innovative Research Ecosystem (ASPIRE) grant JPMJAP2318. This work was further supported by the RIKEN TRIP Initiative (Many-Body Electron Systems). Work at Nanyang Technological University was supported by the National Research Foundation, Singapore, under its Fellowship Award (NRF-NRFF13-2021-0010); the Agency for Science, Technology and Research (A*STAR) under its Manufacturing, Trade and Connectivity (MTC) Individual Research Grant (IRG) (grant M23M6c0100); a Singapore Ministry of Education (MOE) Academic Research Fund Tier 3 grant (MOE-MOET32023-0003); a Singapore Ministry of Education (MOE) AcRF Tier 2 grant (MOE-T2EP50222-0014); and the Nanyang Assistant Professorship grant (NTU-SUG).

Author information

Authors and Affiliations

Authors

Contributions

Y.To. and N.N. supervised the project. I.B. conceived the research. R.W. and I.B. synthesized thin films and fabricated devices with help from Y.S. and S.N. and under the guidance of R.Y., M.Kawam., A.T., K.S.T., M.Kawas. and Y.To. Y.Z., S.S. and Y.J. performed first-principles calculations under the supervision of G.C. Y.K., Y.O., I.B. and X.-X.Z. acquired and analysed Terahertz spectra under the guidance of Y.Ta., N.N. and Y.To. R.W. and I.B. performed transport measurements with help from Y.S., Y.F. and M.H. C.-K.C. performed the numerical calculations with I.B. and Y.S. I.B. wrote the theory under the guidance of C.-K.C., N.N. and Y.To. I.B. wrote the manuscript, with contributions from all authors.

Corresponding authors

Correspondence to Ilya Belopolski or Yoshinori Tokura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Aris Alexandradinata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Burkov–Balents proposal without a multilayer.

a, The original theoretical model considers a stack of alternating layers of topological and trivial insulators hosting two-dimensional Dirac cones (red cones) at each interface. These interface states hybridize with one another with amplitude t across the topological layer and u across the trivial layer; there is also ferromagnetism m (ref. 28). b, The resulting electronic structure shows a semimetallic Weyl phase with two Weyl points along kz (cyan and green dots). c, We circumvent the complicated multilayer structure and realize the same electronic structure as the Burkov–Balents proposal in homogeneously doped thin films of (Cr,Bi)2Te3.

Extended Data Fig. 2 Systematics on the magnetic semiconductor.

AHE of composition E, a trivial magnetic semiconductor. The film shows negligible AHE  1 e2/h for all thicknesses.

Extended Data Fig. 3 Resistivity of compositions A and B.

Measured ρxx(B) and ρyx(B) for (Cr,Bi,Sb)2Te3 and (Cr,Bi)2Te3, used to calculate the conductivity σ(B) in Fig. 1d,e.

Extended Data Fig. 4 Measured Cr composition.

Chromium content x for a series of (Cr,Bi,Sb)2Te3 films measured by ICP-MS, plotted against the nominal chromium content xnominal determined by beam flux pressure during film synthesis. We observe x ≈ 5.7 × xnominal.

Extended Data Fig. 5 Optical conductivity.

Frequency-dependent Hall conductivity in the terahertz range for a Weyl film, composition C of thickness h = 160 nm. The low-frequency [σxy] is approximately constant and consistent with dc transport (square points).

Extended Data Fig. 6 Temperature dependence and angular magnetoresistance.

a, Temperature dependence of the angular magnetoresistance at xCr = 0.13 and xIn = 0 (included in Fig. 3b, between compositions C and D). b, The change in sign of the angular magnetoresistance suggests that, as the magnetization M develops on cooling, the system shows a transition from a Chern insulator to a semimetallic Weyl phase.

Extended Data Fig. 7 Wide-range electronic structure of Cr0.25Sb1.75Te3 under Cr disorder.

The electronic structure was calculated for an Sb2Te3 supercell with one of eight Sb atoms replaced by Cr dopant atoms, under several dopant disorder configurations. The resulting on-site potentials were averaged out. The disordered electronic structure reveals a single pair of Weyl points along Γ–Z, with Weyl point separation Δkz = 48%, and no other bands at the Fermi level.

Extended Data Fig. 8 Distinguishing topological phases through ρxx(T) and σxx(T).

a, Temperature dependence of the resistivity for a Chern insulating composition, similar to composition D (blue); semimetallic Weyl composition C (purple); and magnetic semiconductor at higher indium doping, z = 0.12 (orange). The Curie temperature for the Chern insulating composition is TC ≈ 55 K, obtained from the onset of the Hall resistivity (light blue). Composition C shows a similar TC. Notably, the Weyl composition C shows a marked metallic downturn in ρxx(T) below TC, whereas the Chern insulator film shows no notable feature around TC. The metallic downturn provides an extra signature of the emergence of a semimetallic Weyl state. b, σxx(T) for the same films, obtained from the resistivity.

Extended Data Fig. 9 AHE.

Magnetization M(B) and Hall resistivity ρyx(B) for composition A. We see that ρyx(B) is approximately proportional to M(B), suggesting that the observed Hall resistivity mainly consists of an AHE54.

Extended Data Table 1 Crystal structures used for ab initio calculations

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–6, detailing aspects of the numerical and ab initio calculations; thin-film structural characterization; and the definition of Weyl point separation

Peer Review File

Source data

Source data

Source data

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belopolski, I., Watanabe, R., Sato, Y. et al. Synthesis of a semimetallic Weyl ferromagnet with point Fermi surface. Nature 637, 1078–1083 (2025). https://doi.org/10.1038/s41586-024-08330-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08330-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing