Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Superconductivity in 5.0° twisted bilayer WSe2

Abstract

The discovery of superconductivity in twisted bilayer and trilayer graphene1,2,3,4,5 has generated tremendous interest. The key feature of these systems is an interplay between interlayer coupling and a moiré superlattice that gives rise to low-energy flat bands with strong correlations6. Flat bands can also be induced by moiré patterns in lattice-mismatched and/or twisted heterostructures of other two-dimensional materials, such as transition metal dichalcogenides (TMDs)7,8. Although a wide range of correlated phenomena have indeed been observed in moiré TMDs9,10,11,12,13,14,15,16,17,18,19, robust demonstration of superconductivity has remained absent9. Here we report superconductivity in 5.0° twisted bilayer WSe2 with a maximum critical temperature of 426 mK. The superconducting state appears in a limited region of displacement field and density that is adjacent to a metallic state with a Fermi surface reconstruction believed to arise from AFM order20. A sharp boundary is observed between the superconducting and magnetic phases at low temperature, reminiscent of spin fluctuation-mediated superconductivity21. Our results establish that moiré flat-band superconductivity extends beyond graphene structures. Material properties that are absent in graphene but intrinsic among TMDs, such as a native band gap, large spin–orbit coupling, spin-valley locking and magnetism, offer the possibility of accessing a broader superconducting parameter space than graphene-only structures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electronic band structure and the superconducting pocket.
Fig. 2: Superconductivity in tWSe2.
Fig. 3: Magnetism and phase diagram.
Fig. 4: Temperature dependence of the superconducting boundary.

Similar content being viewed by others

Data availability

The data relevant to figures in the main text are available via Zenodo at https://doi.org/10.5281/zenodo.13910339 (ref. 56). Additional raw data are available from the corresponding author on reasonable request.

References

  1. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  2. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  3. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  4. Park, J. M., Cao, Y., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Tunable strongly coupled superconductivity in magic-angle twisted trilayer graphene. Nature 590, 249–255 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  5. Hao, Z. et al. Electric field–tunable superconductivity in alternating-twist magic-angle trilayer graphene. Science 371, 1133–1138 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  6. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Naik, M. H. & Jain, M. Ultraflatbands and shear solitons in moiré patterns of twisted bilayer transition metal dichalcogenides. Phys. Rev. Lett. 121, 266401 (2018).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  9. Wang, L. et al. Correlated electronic phases in twisted bilayer transition metal dichalcogenides. Nat. Mater. 19, 861–866 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  10. Tang, Y. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 579, 353–358 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  11. Anderson, E. et al. Programming correlated magnetic states via gate controlled moiré geometry. Science 381, 325–330 (2023).

  12. Regan, E. C. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 579, 359–363 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  13. Li, H. et al. Imaging two-dimensional generalized Wigner crystals. Nature 597, 650–654 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  14. Xu, Y. et al. Correlated insulating states at fractional fillings of moiré superlattices. Nature 587, 214–218 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  15. Li, T. et al. Quantum anomalous Hall effect from intertwined moiré bands. Nature 600, 641–646 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  16. Cai, J. et al. Signatures of fractional quantum anomalous Hall states in twisted MoTe2 bilayer. Nature 622, 63–68 (2023).

  17. Zeng, Y. et al. Thermodynamic evidence of fractional Chern insulator in moiré MoTe2. Nature 622, 69–73 (2023).

  18. Park, H. et al. Observation of fractionally quantized anomalous Hall effect. Nature 622, 74–79 (2023).

  19. Foutty, B. A. et al. Mapping twist-tuned multiband topology in bilayer WSe2. Science 384, 343–347 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Ghiotto, A. et al. Stoner instabilities and Ising excitonic states in twisted transition metal dichalcogenides. Preprint at https://arxiv.org/abs/2405.17316 (2024).

  21. Mathur, N. D. et al. Magnetically mediated superconductivity in heavy fermion compounds. Nature 394, 39–43 (1998).

    Article  ADS  CAS  MATH  Google Scholar 

  22. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  23. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  24. Zhou, H., Xie, T., Taniguchi, T., Watanabe, K. & Young, A. F. Superconductivity in rhombohedral trilayer graphene. Nature 598, 434–438 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Zhou, H. et al. Isospin magnetism and spin-polarized superconductivity in Bernal bilayer graphene. Science 375, 774–778 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  26. Zhang, Y. et al. Enhanced superconductivity in spin–orbit proximitized bilayer graphene. Nature 613, 268–273 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  27. Li, C. et al. Tunable superconductivity in electron- and hole-doped Bernal bilayer graphene. Nature 631, 300–306 (2024).

  28. Venderley, J. & Kim, E.-A. Density matrix renormalization group study of superconductivity in the triangular lattice Hubbard model. Phys. Rev. B 100, 060506 (2019).

    Article  ADS  CAS  Google Scholar 

  29. Hsu, Y.-T., Wu, F. & Das Sarma, S. Spin-valley locked instabilities in moiré transition metal dichalcogenides with conventional and higher-order Van Hove singularities. Phys. Rev. B 104, 195134 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Schrade, C. and Fu, L. Nematic, chiral and topological superconductivity in transition metal dichalcogenides. Phys. Rev. B 110, 035143 (2024).

  31. Crépel, V., Guerci, D., Cano, J., Pixley, J. H. & Millis, A. Topological superconductivity in doped magnetic moiré semiconductors. Phys. Rev. Lett. 131, 056001 (2023).

    Article  ADS  PubMed  Google Scholar 

  32. Klebl, L., Fischer, A., Classen, L., Scherer, M. M. & Kennes, D. M. Competition of density waves and superconductivity in twisted tungsten diselenide. Phys. Rev. Res. 5, L012034 (2023).

    Article  CAS  Google Scholar 

  33. Zhou, B. & Zhang, Y.-H. Chiral and nodal superconductors in the tJ model with valley contrasting flux on a triangular moiré lattice. Phys. Rev. B 108, 155111 (2023).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  34. Zegrodnik, M. & Biborski, A. Mixed singlet-triplet superconducting state within the moiré tJU model applied to twisted bilayer WSe2. Phys. Rev. B 108, 064506 (2023).

    Article  ADS  CAS  MATH  Google Scholar 

  35. Pack, J. et al. Charge-transfer contacts for the measurement of correlated states in high-mobility WSe2. Nat. Nanotechnol. 19, 948–954 (2024).

  36. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  CAS  Google Scholar 

  37. Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex-antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

    Article  ADS  CAS  Google Scholar 

  38. Zang, J., Wang, J., Cano, J. & Millis, A. J. Hartree-Fock study of the moiré Hubbard model for twisted bilayer transition metal dichalcogenides. Phys. Rev. B 104, 075150 (2021).

    Article  ADS  CAS  Google Scholar 

  39. Crépel, V. & Millis, A. Bridging the small and large in twisted transition metal dicalcogenide homobilayers: A tight binding model capturing orbital interference and topology across a wide range of twist angles. Phys. Rev. Res. 6, 033127 (2024).

  40. Liu, X. et al. Tuning electron correlation in magic-angle twisted bilayer graphene using Coulomb screening. Science 371, 1261–1265 (2021).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  41. Holleis, L. et al. Nematicity and orbital depairing in superconducting Bernal bilayer graphene with strong spin orbit coupling. Preprint at https://arxiv.org/abs/2303.00742 (2023).

  42. Yang, Z., Lange, M., Volodin, A., Szymczak, R. & Moshchalkov, V. V. Domain-wall superconductivity in superconductor–ferromagnet hybrids. Nat. Mater. 3, 793–798 (2004).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Mukherjee, A. et al. Superconducting magic-angle twisted trilayer graphene hosts competing magnetic order and moiré inhomogeneities. Preprint at https://arxiv.org/abs/2406.02521 (2024).

  44. Bardeen, J., Cooper, L. N. & Schrieffer, J. R. Theory of superconductivity. Phys. Rev. 108, 1175–1204 (1957).

    Article  ADS  MathSciNet  CAS  MATH  Google Scholar 

  45. Balents, L., Dean, C. R., Efetov, D. K. & Young, A. F. Superconductivity and strong correlations in moiré flat bands. Nat. Phys. 16, 725–733 (2020).

    Article  CAS  MATH  Google Scholar 

  46. Wu, F., MacDonald, A. H. & Martin, I. Theory of phonon-mediated superconductivity in twisted bilayer graphene. Phys. Rev. Lett. 121, 257001 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Fischer, A., Klebl, L., Honerkamp, C. & Kennes, D. M. Spin-fluctuation-induced pairing in twisted bilayer graphene. Phys. Rev. B 103, L041103 (2021).

    Article  ADS  CAS  Google Scholar 

  48. Zhai, H., Wang, F. & Lee, D.-H. Antiferromagnetically driven electronic correlations in iron pnictides and cuprates. Phys. Rev. B 80, 064517 (2009).

    Article  ADS  Google Scholar 

  49. Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    Article  ADS  CAS  MATH  Google Scholar 

  50. Xia, Y. et al. Superconductivity in twisted bilayer WSe2. Nature https://doi.org/10.1038/s41586-024-08116-2 (2024).

  51. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  52. Sternbach, A. J. et al. Quenched excitons in WSe2/α-RuCl3 heterostructures revealed by multimessenger nanoscopy. Nano Lett. 23, 5070–5075 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  53. Xie, J. et al. Low resistance contact to P-type monolayer WSe2. Nano Lett. 24, 5937–5943 (2024).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  54. Liu, S. et al. Two-step flux synthesis of ultrapure transition-metal dichalcogenides. ACS Nano 17, 16587–16596 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  56. Guo, Y. Data related to “Superconductivity in 5.0° twisted bilayer WSe2”. Zenodo https://doi.org/10.5281/zenodo.13910339 (2024).

Download references

Acknowledgements

This research on superconductivity in tWSe2 structures is solely supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0019443. WSe2 was synthesized by J.H. and K.B. with the support of the Columbia University Materials Science and Engineering Research Center, through NSF grant no. DMR-2011738. D.G.M. and M.C. acknowledge support from the Gordon and Betty Moore Foundation’s EPiQS Initiative (grant no. GBMF9069). K.W. and T.T. acknowledge support from JSPS KAKENHI (grant nos. 21H05233 and 23H02052) and the World Premier International Research Center Initiative, MEXT, Japan. J.H. and C.R.D. acknowledge additional support from the Gordon and Betty Moore Foundation’s EPiQS Initiative (grant no. GBMF10277).

Author information

Authors and Affiliations

Authors

Contributions

Y.G. fabricated the device. Y.G., J.P., J.S. and C.R.D. performed electronic transport measurements and analysed data. L.H. grew WSe2 crystals under the supervision of J.H. and K.B. M.C. grew α-RuCl3 crystals under the supervision of D.G.M. K.W. and T.T. grew hexagonal boron nitride crystals. A.M. performed theoretical modelling. Y.G., A.J.M., A.P. and C.R.D. wrote the manuscript, with input from all authors.

Corresponding author

Correspondence to Cory R. Dean.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Sergio de la Barrera, Zheng Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15 and references.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Y., Pack, J., Swann, J. et al. Superconductivity in 5.0° twisted bilayer WSe2. Nature 637, 839–845 (2025). https://doi.org/10.1038/s41586-024-08381-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08381-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing