Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Two-dimensional polyaniline crystal with metallic out-of-plane conductivity

Abstract

Linear conducting polymers show ballistic transport, imposed by mobile carriers moving along the polymer chains1,2, whereas conductance in the extended dimension, that is, between polymer strands or layers, remains weak due to the lack of intermolecular ordering and electronic coupling3,4,5. Here we report a multilayer-stacked two-dimensional polyaniline (2DPANI) crystal, which shows metallic out-of-plane charge transport with high electrical conductivity. The material comprises columnar π arrays with an interlayer distance of 3.59 Å and periodic rhombohedral lattices formed by interwoven polyaniline chains. Electron spin resonance spectroscopy reveals significant electron delocalization in the 2DPANI lattices. First-principles calculations indicate the in-plane 2D conjugation and strong interlayer electronic coupling in 2DPANI facilitated by the Cl-bridged layer stacking. To assess the local optical conductivity, we used terahertz and infrared nanospectroscopy to unravel a Drude-type conductivity with an infrared plasma frequency and an extrapolated local d.c. conductivity of around 200 S cm−1. Conductive scanning probe microscopy showed an unusually high out-of-plane conductivity of roughly 15 S cm−1. Transport measurements through vertical and lateral micro-devices revealed comparable high out-of-plane (roughly 7 S cm−1) and in-plane conductivity (roughly 16 S cm−1). The vertical micro-devices further showed increasing conductivity with decreasing temperature, demonstrating unique out-of-plane metallic transport behaviour. By using this multilayer-stacked 2D conducting polymer design, we predict the achievement of strong electronic coupling beyond in-plane interactions, potentially reaching three-dimensional metallic conductivity6,7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the synthesis procedure and proposed molecular structure for 2DPANI.
Fig. 2: Morphology and structural characterizations of 2DPANI crystals.
Fig. 3: Electronic properties of 2DPANI by ESR studies and DFT calculations.
Fig. 4: THz and IR nanoimaging and nanospectroscopy of 2DPANI.

Similar content being viewed by others

Data availability

The data supporting the findings of the study are available in the paper and its Supplementary Information.

References

  1. Chiang, C. K. et al. Electrical-conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    ADS  CAS  MATH  Google Scholar 

  2. Phillips, P. & Wu, H. L. Localization and its absence—a new metallic state for conducting polymers. Science 252, 1805–1812 (1991).

    ADS  CAS  PubMed  MATH  Google Scholar 

  3. Kohlman, R. S. et al. Limits for metallic conductivity in conducting polymers. Phys. Rev. Lett. 78, 3915–3918 (1997).

    ADS  CAS  MATH  Google Scholar 

  4. Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).

    ADS  CAS  PubMed  MATH  Google Scholar 

  5. Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    ADS  CAS  PubMed  MATH  Google Scholar 

  6. Wang, Z. H., Li, C., Scherr, E. M., Macdiarmid, A. G. & Epstein, A. J. Three dimensionality of metallic states in conducting polymers: polyaniline. Phys. Rev. Lett. 66, 1745–1748 (1991).

    ADS  CAS  PubMed  MATH  Google Scholar 

  7. Jeon, D., Kim, J., Gallagher, M. C. & Willis, R. F. Scanning tunneling spectroscopic evidence for granular metallic conductivity in conducting polymeric polyaniline. Science 256, 1662–1664 (1992).

    ADS  CAS  PubMed  Google Scholar 

  8. Xie, J. et al. Intrinsic glassy-metallic transport in an amorphous coordination polymer. Nature 611, 479–484 (2022).

    ADS  CAS  PubMed  MATH  Google Scholar 

  9. Bubnova, O. et al. Semi-metallic polymers. Nat. Mater. 13, 190–194 (2014).

    ADS  CAS  PubMed  MATH  Google Scholar 

  10. Lee, K. et al. Metallic transport in polyaniline. Nature 441, 65–68 (2006).

    ADS  CAS  PubMed  MATH  Google Scholar 

  11. Tang, H. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 611, 271–277 (2022).

    ADS  CAS  PubMed  MATH  Google Scholar 

  12. Podzorov, V. Conjugated polymers: long and winding polymeric roads. Nat. Mater. 12, 947–948 (2013).

    ADS  CAS  PubMed  MATH  Google Scholar 

  13. Brondijk, J. J. et al. Two-dimensional charge transport in disordered organic semiconductors. Phys. Rev. Lett. 109, 056601 (2012).

    ADS  CAS  PubMed  MATH  Google Scholar 

  14. Basescu, N. et al. High electrical-conductivity in doped polyacetylene. Nature 327, 403–405 (1987).

    ADS  CAS  Google Scholar 

  15. Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    ADS  CAS  MATH  Google Scholar 

  16. Osterbacka, R., An, C. P., Jiang, X. M. & Vardeny, Z. V. Two-dimensional electronic excitations in self-assembled conjugated polymer nanocrystals. Science 287, 839–842 (2000).

    ADS  CAS  PubMed  Google Scholar 

  17. Jin, E. Q. et al. Two-dimensional sp(2) carbon-conjugated covalent organic frameworks. Science 357, 673–676 (2017).

    ADS  CAS  PubMed  MATH  Google Scholar 

  18. Liu, W. et al. A two-dimensional conjugated aromatic polymer via C-C coupling reaction. Nat. Chem. 9, 563–570 (2017).

    CAS  PubMed  MATH  Google Scholar 

  19. Gutzler, R. & Perepichka, D. F. π-Electron conjugation in two dimensions. J. Am. Chem. Soc. 135, 16585–16594 (2013).

    CAS  PubMed  MATH  Google Scholar 

  20. Jing, Y. & Heine, T. Making 2D topological polymers a reality. Nat. Mater. 19, 823–824 (2020).

    ADS  CAS  PubMed  MATH  Google Scholar 

  21. Springer, M. A., Liu, T. J., Kuc, A. & Heine, T. Topological two-dimensional polymers. Chem. Soc. Rev. 49, 2007–2019 (2020).

    CAS  PubMed  MATH  Google Scholar 

  22. Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).

    ADS  CAS  PubMed  MATH  Google Scholar 

  23. Wang, M. et al. Exceptionally high charge mobility in phthalocyanine-based poly(benzimidazobenzophenanthroline)-ladder-type two-dimensional conjugated polymers. Nat. Mater. 22, 880–887 (2023).

    ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  24. Liu, K. J. et al. On-water surface synthesis of crystalline, few-layer two-dimensional polymers assisted by surfactant monolayers. Nat. Chem. 11, 994–1000 (2019).

    ADS  CAS  PubMed  MATH  Google Scholar 

  25. Zhang, T. et al. Engineering crystalline quasi-two-dimensional polyaniline thin film with enhanced electrical and chemiresistive sensing performances. Nat. Commun. 10, 4225 (2019).

    ADS  PubMed  PubMed Central  MATH  Google Scholar 

  26. Tan, K. T. et al. Covalent organic frameworks. Nat. Rev. Methods Primers 3, 1 (2023).

    CAS  MATH  Google Scholar 

  27. Qi, H. Y. et al. Near-atomic-scale observation of grain boundaries in a layer-stacked two-dimensional polymer. Sci. Adv. 6, eabb5976 (2020).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Galvao, D. S., Dossantos, D. A., Laks, B., Demelo, C. P. & Caldas, M. J. Role of disorder in the conduction mechanism of polyanilines. Phys. Rev. Lett. 63, 786–789 (1989).

    ADS  CAS  Google Scholar 

  29. Krinichnyi, V. I. Dynamics of spin charge carriers in polyaniline. Appl. Phys. Rev. 1, 021305 (2014).

    ADS  Google Scholar 

  30. Huber, A. J., Keilmann, F., Wittborn, J., Aizpurua, J. & Hillenbrand, R. Terahertz near-field nanoscopy of mobile carriers in single semiconductor nanodevices. Nano Lett. 8, 3766–3770 (2008).

    ADS  CAS  PubMed  Google Scholar 

  31. Huth, F. et al. Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett. 12, 3973–3978 (2012).

    ADS  MathSciNet  CAS  PubMed  MATH  Google Scholar 

  32. Cvitkovic, A., Ocelic, N. & Hillenbrand, R. Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. Opt. Express 15, 8550–8565 (2007).

    ADS  CAS  PubMed  MATH  Google Scholar 

  33. Madsen, G. K. H., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).

    ADS  CAS  MATH  Google Scholar 

  34. Liu, S. H. et al. Two-dimensional mesoscale-ordered conducting polymers. Angew. Chem. Int. Edit. 55, 12516–12521 (2016).

    CAS  Google Scholar 

  35. Kohlman, R. S. et al. Inhomogeneous insulator-metal transition in conducting polymers. Synthetic Met 84, 709–714 (1997).

    CAS  MATH  Google Scholar 

  36. Kohlman, R. S., Joo, J., Min, Y. G., MacDiarmid, A. G. & Epstein, A. J. Crossover in electrical frequency response through an insulator-metal transition. Phys. Rev. Lett. 77, 2766–2769 (1996).

    ADS  CAS  PubMed  MATH  Google Scholar 

  37. Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    ADS  CAS  PubMed  Google Scholar 

  38. Wang, X. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci. Adv. 4, eaat5780 (2018).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B. 54, 11169–11186 (1996).

    ADS  CAS  MATH  Google Scholar 

  40. Blochl, P. E. Projector augmented-wave method. Phys. Rev. B. 50, 17953–17979 (1994).

    ADS  CAS  Google Scholar 

  41. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces—applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B. 46, 6671–6687 (1992).

    ADS  CAS  MATH  Google Scholar 

  42. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS  CAS  PubMed  Google Scholar 

  43. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    CAS  PubMed  MATH  Google Scholar 

  44. Chang, T., Foster, D. & Kahn, A. An intensity standard for electron paramagnetic resonance using chromium-doped corundum (Al2O3: Cr3+). J. Res. Natl Bur. Stand. 83, 133–164 (1977).

    Google Scholar 

  45. Ocelic, N., Huber, A. & Hillenbrand, R. Pseudoheterodyne detection for background-free near-field spectroscopy. Appl. Phys. Lett. 89, 101124 (2006).

    ADS  Google Scholar 

  46. Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. & Hillenbrand, R. Probes for ultrasensitive THz nanoscopy. ACS Photonics 6, 1279–1288 (2019).

    CAS  Google Scholar 

  47. Schnell, M., Carney, P. S. & Hillenbrand, R. Synthetic optical holography for rapid nanoimaging. Nat. Commun. 5, 3499 (2014).

    ADS  CAS  PubMed  MATH  Google Scholar 

  48. Yuan, Q. et al. Thin film structure of tetraceno[2,3-b]thiophene characterized by grazing incidence X-ray scattering and near-edge X-ray absorption fine structure analysis. J. Am. Chem. Soc. 130, 3502–3508 (2008).

    CAS  PubMed  MATH  Google Scholar 

  49. Talnack, F. et al. Thermal behavior and polymorphism of 2,9-didecyldinaphtho[2,3-b:2′,3′-f]thieno[3,2-b]thiophene thin films. Mol. Syst. Des. Eng. 7, 507–519 (2022).

    CAS  Google Scholar 

  50. Aradi, B., Hourahine, B. & Frauenheim, T. DFTB+, a sparse matrix-based implementation of the DFTB method. J. Phys. Chem. A. 111, 5678–5684 (2007).

    CAS  PubMed  Google Scholar 

  51. Gaus, M., Goez, A. & Elstner, M. Parametrization and benchmark of DFTB3 for organic molecules. J. Chem. Theory Comput. 9, 338–354 (2013).

    CAS  PubMed  Google Scholar 

  52. Lu, X. Y., Gaus, M., Elstner, M. & Cui, Q. Parametrization of DFTB3/3OB for magnesium and zinc for chemical and biological applications. J. Phys. Chem. B. 119, 1062–1082 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

R.D., R.H. and X.F. acknowledge the funding support from EU Graphene Flagship (GrapheneCore3, grant no. 881603), ERC starting grant (FC2DMOF, grant no. 852909), ERC Consolidator grant (no. T2DCP). R.D., X.F., T.B. and T.H. thank Deutsche Forschungsgemeinschaft within CRC 1415 (Chemistry of Synthetic Two-Dimensional Materials, grant no. 417590517), as well as the Center of Advancing Electronics Dresden (cfaed). T.Z. acknowledges the funds from the National Natural Science Foundation of China (grant no. 52322316) and the Excellent Youth Foundation of Zhejiang Province of China (grant no. RG25E030003). R.D. acknowledges the National Natural Science Foundation of China (grant nos. 22272092 and 22472085). S.C. acknowledges the funds from the National Natural Science Foundation of China (grant nos. 61988102, 6242200987 and 62301319) and the Science and Technology Commission of Shanghai Municipality (grant nos. 23010503400 and 23ZR1443500). We acknowledge P. Mack and L. Kaeselitz from Thermo Fisher Scientific (UK) for the assistance of μXPS characterization. R.H. acknowledges financial support from Grant CEX2020-001038-M funded by the Spanish MICIU/AEI/10.13039/501100011033 and Grants RTI2018-094830-B-I00 and PID2021-123949OB-I00 funded by the Spanish MICIU/AEI/10.13039/501100011033 and by ERDF/EU. P.L acknowledges the National Natural Science Foundation of China (grant no. 62075070), the Hubei Optical Fundamental Research Center, and the Innovation Fund of WNLO. T.B., T.H. and P.P.P. thank ZIH Dresden for providing computational resources. We acknowledge ELETTRA Sincrotrone Trieste for providing access to its synchrotron radiation facilities and we thank L. Barba for assistance in using beamline XRD1. The research leading to this result has been supported by the project CALIPSOplus under grant agreement no. 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020.

Author information

Authors and Affiliations

Authors

Contributions

T.Z., R.D., R.H. and X.F. conceived the idea and supervised the project. T.Z. and P.Z. performed the synthesis and basic characterization and data analysis. S.X. supported the experiment of model reaction. S.C., P.L., L.M. and R.H. carried out the terahertz and IR nanospectroscopy measurements and analysis. P.P.P., T.B. and T.H. implemented the DFT calculations. H.Q., U.K., Z.L. and E.Z. performed SAED and HRTEM characterization and analysis. N.N.N. carried out c-AFM and analysis. N.N.N., J.Y., W.Z. and S.S.P.P. carried out the study of micro-devices. A.A., V.K., and B.B. performed ESR study. M.H. and S.C.B.M. supported GIWAXS study. All authors discussed the results and assisted with manuscript composition.

Corresponding authors

Correspondence to Thomas Heine, Renhao Dong, Rainer Hillenbrand or Xinliang Feng.

Ethics declarations

Competing interests

R.H. is a cofounder of Neaspec GmbH, which is now a part of attocube systems AG, a company producing scattering-type scanning near-field optical microscope systems, such as the ones used in this study. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature thanks Reverant Crispin, Wenping Hu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–36 and Tables 1–6.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Chen, S., Petkov, P.S. et al. Two-dimensional polyaniline crystal with metallic out-of-plane conductivity. Nature 638, 411–417 (2025). https://doi.org/10.1038/s41586-024-08387-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08387-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing