Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic photobiocatalysis for enantioselective triple-radical sorting

Abstract

Multicomponent reactions—those where three or more substrates combine into a product—have been highly useful in rapidly building chemical building blocks of increased complexity1, but achieving this enzymatically has remained rare2,3,4,5. This limitation primarily arises because an enzyme’s active site is not typically set up to address multiple substrates, especially in cases involving multiple radical intermediates6. Recently, chemical catalytic radical sorting has emerged as an enabling strategy for a variety of useful reactions7,8. However, making such processes enantioselective is highly challenging owing to the inherent difficulty in the stereochemical control of radicals9. Here we repurpose a thiamine-dependent enzyme10,11 through directed evolution and combine it with photoredox catalysis to achieve a photobiocatalytic enantioselective three-component radical cross-coupling. This approach combines three readily available starting materials—aldehydes, α-bromo-carbonyls and alkenes—to give access to enantioenriched ketone products. Mechanistic investigations provide insights into how this dual photocatalyst–enzyme system precisely directs the three distinct radicals involved in the transformation, unlocking enzyme reactivity. Our approach has achieved exceptional stereoselectivity, with 24 out of 33 examples achieving ≥97% enantiomeric excess.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The evolution of photobiocatalysis for triple-radical sorting.
Fig. 2: The development of three-component photobiocatalysis.
Fig. 3: Scope of the three-component photobiocatalysis.
Fig. 4: Mechanistic studies.

Similar content being viewed by others

Data availability

All data are available in the main text or Supplementary Information, and from the Cambridge Crystallographic Data Centre (CCDC; http://www.ccdc.cam.ac.uk/structures/); crystallographic data are available free of charge under CCDC reference numbers 2345903 (4a), 2345905 (4b) and 2345907 (4ab).

References

  1. Dömling, A., Wang, W. & Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev. 112, 3083–3135 (2012).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  2. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  MATH  Google Scholar 

  3. Reetz, M. T. Biocatalysis in organic chemistry and biotechnology: past, present, and future. J. Am. Chem. Soc. 135, 12480–12496 (2013).

    Article  CAS  PubMed  MATH  Google Scholar 

  4. Bell, E. L. et al. From nature to industry: harnessing enzymes for biocatalysis. Science 382, eadh8615 (2023).

    Article  Google Scholar 

  5. Thorpe, T. W., Marshall, J. R. & Turner, N. J. Multifunctional biocatalysts for organic synthesis. J. Am. Chem. Soc. 146, 7876–7884 (2024).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  6. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    Article  ADS  CAS  MATH  Google Scholar 

  7. Chen, R. et al. Alcohol–alcohol cross-coupling enabled by SH2 radical sorting. Science 383, 1350–1357 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Wang, J. Z., Lyon, W. L. & MacMillan, D. W. C. Alkene dialkylation by triple radical sorting. Nature 628, 104–109 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Mondal, S. et al. Enantioselective radical reactions using chiral catalysts. Chem. Rev. 122, 5842–5976 (2022).

    Article  CAS  PubMed  Google Scholar 

  10. Breslow, R. On the mechanism of thiamine action. IV.1 Evidence from studies on model systems. J. Am. Chem. Soc. 80, 3719–3726 (1958).

    Article  CAS  MATH  Google Scholar 

  11. Brandt, G. S. et al. Probing the active center of benzaldehyde lyase with substitutions and the pseudosubstrate analogue benzoylphosphonic acid methyl ester. Biochemistry 47, 7734–7743 (2008).

    Article  CAS  PubMed  MATH  Google Scholar 

  12. Hug, J. J., Krug, D. & Müller, R. Bacteria as genetically programmable producers of bioactive natural products. Nat. Rev. Chem. 4, 172–193 (2020).

    Article  CAS  PubMed  MATH  Google Scholar 

  13. Singh, K. et al. Reconstruction of a fatty acid synthesis cycle from acyl carrier protein and cofactor structural snapshots. Cell 186, 5054–5067.e5016 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  14. Benítez-Mateos, A. I., Roura Padrosa, D. & Paradisi, F. Multistep enzyme cascades as a route towards green and sustainable pharmaceutical syntheses. Nat. Chem. 14, 489–499 (2022).

    Article  PubMed  Google Scholar 

  15. Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  16. McIntosh, J. A. et al. A kinase-cGAS cascade to synthesize a therapeutic STING activator. Nature 603, 439–444 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  17. Thorpe, T. W. et al. Multifunctional biocatalyst for conjugate reduction and reductive amination. Nature 604, 86–91 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  18. Tseliou, V. et al. Enantioselective biocascade catalysis with a single multifunctional enzyme. Angew. Chem. Int. Ed. 61, e202212176 (2022).

    Article  ADS  CAS  Google Scholar 

  19. Ouyang, Y., Turek-Herman, J., Qiao, T. & Hyster, T. K. Asymmetric carbohydroxylation of alkenes using photoenzymatic catalysis. J. Am. Chem. Soc. 145, 17018–17022 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Harrison, W., Huang, X. & Zhao, H. Photobiocatalysis for abiological transformations. Acc. Chem. Res. 55, 1087–1096 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  21. Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  22. Sorigue, D. et al. An algal photoenzyme converts fatty acids to hydrocarbons. Science 357, 903–907 (2017).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  23. Sorigue, D. et al. Mechanism and dynamics of fatty acid photodecarboxylase. Science 372, eabd5687 (2021).

    Article  CAS  PubMed  Google Scholar 

  24. Trimble, J. S. et al. A designed photoenzyme for enantioselective [2+2] cycloadditions. Nature 611, 709–714 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  25. Sun, N. et al. Enantioselective [2+2]-cycloadditions with triplet photoenzymes. Nature 611, 715–720 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  26. Emmanuel, M. A., Greenberg, N. R., Oblinsky, D. G. & Hyster, T. K. Accessing non-natural reactivity by irradiating nicotinamide-dependent enzymes with light. Nature 540, 414–417 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Biegasiewicz, K. F. et al. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 364, 1166–1169 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  28. Huang, X. et al. Photoenzymatic enantioselective intermolecular radical hydroalkylation. Nature 584, 69–74 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Huang, X. et al. Photoinduced chemomimetic biocatalysis for enantioselective intermolecular radical conjugate addition. Nat. Catal. 5, 586–593 (2022).

    Article  CAS  MATH  Google Scholar 

  30. Peng, Y. et al. Photoinduced promiscuity of cyclohexanone monooxygenase for the enantioselective synthesis of α-fluoroketones. Angew. Chem. Int. Ed. 61, e202211199 (2022).

    Article  CAS  Google Scholar 

  31. Cheng, L. et al. Stereoselective amino acid synthesis by synergistic photoredox-pyridoxal radical biocatalysis. Science 381, 444–451 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhao, B. et al. Direct visible-light-excited flavoproteins for redox-neutral asymmetric radical hydroarylation. Nat. Catal. 6, 996–1004 (2023).

    Article  CAS  MATH  Google Scholar 

  33. Xu, Y. et al. A light-driven enzymatic enantioselective radical acylation. Nature 625, 74–78 (2024).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  34. Shi, Q. et al. Single-electron oxidation-initiated enantioselective hydrosulfonylation of olefins enabled by photoenzymatic catalysis. J. Am. Chem. Soc. 146, 2748–2756 (2024).

    Article  CAS  PubMed  MATH  Google Scholar 

  35. Wang, T.-C. et al. Stereoselective amino acid synthesis by photobiocatalytic oxidative coupling. Nature 629, 98–104 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  36. Ouyang, Y., Page, C. G., Bilodeau, C. & Hyster, T. K. Synergistic photoenzymatic catalysis enables synthesis of α-tertiary amino acids using threonine aldolases. J. Am. Chem. Soc. 146, 13754–13759 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tseliou, V. et al. Stereospecific radical coupling with a non-natural photodecarboxylase. Nature 634, 848–854 (2024).

    Article  CAS  PubMed  MATH  Google Scholar 

  38. Hailes, H. C. et al. Engineering stereoselectivity of ThDP-dependent enzymes. FEBS J. 280, 6374–6394 (2013).

    Article  CAS  PubMed  MATH  Google Scholar 

  39. Xu, J. et al. Stereodivergent protein engineering of a lipase to access all possible stereoisomers of chiral esters with two stereocenters. J. Am. Chem. Soc. 141, 7934–7945 (2019).

    Article  CAS  PubMed  MATH  Google Scholar 

  40. Liu, K., Schwenzer, M. & Studer, A. Radical NHC catalysis. ACS Catal. 12, 11984–11999 (2022).

    Article  CAS  Google Scholar 

  41. Parsaee, F. et al. Radical philicity and its role in selective organic transformations. Nat. Rev. Chem. 5, 486–499 (2021).

    Article  CAS  PubMed  MATH  Google Scholar 

  42. Xiao, X. et al. Biomimetic asymmetric catalysis. Sci. China Chem. 66, 1553–1633 (2023).

    Article  CAS  MATH  Google Scholar 

  43. Lovelock, S. L. et al. The road to fully programmable protein catalysis. Nature 606, 49–58 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

Download references

Acknowledgements

We thank D. Ye, Y. Wang and Z. Shi from NJU for sharing their equipment. We thank the financial support from the National Natural Science Foundation of China (22277053, 22122305, 21927814 and 223B2703), the National Key Research and Development Program of China (2022YFA0913000 and 2019YFA0405600), Natural Science Foundation of Jiangsu Province (BK20220760), Fundamental Research Funds for the Central Universities 0205/14380346, Excellent Research Program of Nanjing University (ZYJH004), and the Strategic Priority Research Program of Chinese Academy of Sciences (XDB0960201 and XDB0540200).

Author information

Authors and Affiliations

Authors

Contributions

Z.X. developed the system and performed most of the synthetic experiments. F.L. performed the protein mutagenesis. J.F. performed the theoretical calculations under the supervision of B.W. L.Y. and A.L. carried out the electron paramagnetic resonance measurements. Z.W., B.Z. B.C., H.P., Y.X. and C.W. assisted in the synthetic experiments and mechanistic investigations. Y.Z. performed the X-ray crystal structure analysis. X.H. and B.W. wrote the paper with input from all authors. X.H. coordinated and conceived of the project.

Corresponding authors

Correspondence to Binju Wang or Xiaoqiang Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Dominic Campopiano, Julian West and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–18, Tables 1–20, Methods and References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Z., Liu, F., Feng, J. et al. Synergistic photobiocatalysis for enantioselective triple-radical sorting. Nature 637, 1118–1123 (2025). https://doi.org/10.1038/s41586-024-08399-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08399-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing