Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Modulated ringdown comb interferometry for sensing of highly complex gases

Abstract

Gas samples relevant to health1,2,3 and the environment4,5,6 typically contain many molecular species that span a huge concentration dynamic range. Mid-infrared frequency comb spectroscopy with high-finesse cavity enhancement has allowed the most sensitive multispecies trace-gas detections so far2,7,8,9,10,11,12,13. However, the robust performance of this technique depends critically on ensuring absorption-path-length enhancement over a broad spectral coverage, which is severely limited by comb–cavity frequency mismatch if strongly absorbing compounds are present. Here we introduce modulated ringdown comb interferometry, a technique that resolves the vulnerability of comb–cavity enhancement to strong intracavity absorption or dispersion. This technique works by measuring ringdown dynamics carried by massively parallel comb lines transmitted through a length-modulated cavity, making use of both the periodicity of the field dynamics and the Doppler frequency shifts introduced from a Michelson interferometer. As a demonstration, we measure highly dispersive exhaled human breath samples and ambient air in the mid-infrared with finesse improved to 23,000 and coverage to 1,010 cm−1. Such a product of finesse and spectral coverage is orders of magnitude better than all previous demonstrations2,7,8,9,10,11,12,13,14,15,16,17,18,19,20, enabling us to simultaneously quantify 20 distinct molecular species at above 1-part-per-trillion sensitivity varying in concentrations by seven orders of magnitude. This technique unlocks next-generation sensing performance for complex and dynamic molecular compositions, with scalable improvement to both finesse and spectral coverage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: MRCI.
Fig. 2: Extreme-performance multispecies trace-gas sensing.
Fig. 3: Apparatus and survey ringdown spectra collected with MRCI.
Fig. 4: Molecular spectroscopy from the 5-μm cavity.
Fig. 5: Molecular spectroscopy from the 3-μm cavity.
Fig. 6: Molecular concentrations summary.

Similar content being viewed by others

Data availability

All data and supporting materials have been deposited to Zenodo and can be accessed at https://doi.org/10.5281/zenodo.14254339 (ref. 80).

References

  1. Thorpe, M. J., Balslev-Clausen, D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Liang, Q. et al. Ultrasensitive multispecies spectroscopic breath analysis for real-time health monitoring and diagnostics. Proc. Natl Acad. Sci. 118, e2105063118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liang, Q. et al. Breath analysis by ultra-sensitive broadband laser spectroscopy detects SARS-CoV-2 infection. J. Breath Res. 17, 036001 (2023).

    Article  ADS  CAS  Google Scholar 

  4. Rieker, G. B. et al. Frequency-comb-based remote sensing of greenhouse gases over kilometer air paths. Optica 1, 290–298 (2014).

    Article  ADS  CAS  MATH  Google Scholar 

  5. Herman, D. I. et al. Precise multispecies agricultural gas flux determined using broadband open-path dual-comb spectroscopy. Sci. Adv. 7, eabe9765 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Giorgetta, F. R. et al. Open-path dual-comb spectroscopy for multispecies trace gas detection in the 4.5–5 μm spectral region. Laser Photonics Rev. 15, 2000583 (2021).

    Article  ADS  CAS  MATH  Google Scholar 

  7. Bui, T. Q. et al. Spectral analyses of trans- and cis-DOCO transients via comb spectroscopy. Mol. Phys. 116, 3710–3717 (2018).

    Article  ADS  CAS  MATH  Google Scholar 

  8. Changala, P. B., Spaun, B., Patterson, D., Doyle, J. M. & Ye, J. Sensitivity and resolution in frequency comb spectroscopy of buffer gas cooled polyatomic molecules. Appl. Phys. B 122, 292 (2016).

    Article  ADS  Google Scholar 

  9. Spaun, B. et al. Continuous probing of cold complex molecules with infrared frequency comb spectroscopy. Nature 533, 517–520 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Foltynowicz, A., Maslowski, P., Fleisher, A. J., Bjork, B. J. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared application to trace detection of hydrogen peroxide. Appl. Phys. B 110, 163–175 (2013).

    Article  ADS  CAS  Google Scholar 

  11. Changala, P. B., Weichman, M. L., Lee, K. F., Fermann, M. E. & Ye, J. Rovibrational quantum state resolution of the C60 fullerene. Science 363, 49–54 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Bjork, B. J. et al. Direct frequency comb measurement of OD + CO → DOCO kinetics. Science 354, 444–448 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  13. Bui, T. Q. et al. Direct measurements of DOCO isomers in the kinetics of OD + CO. Sci. Adv. 4, eaao4777 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Fleisher, A. J. et al. Mid-infrared time-resolved frequency comb spectroscopy of transient free radicals. J. Phys. Chem. Lett. 5, 2241–2246 (2014).

    Article  CAS  PubMed  MATH  Google Scholar 

  15. Lu, C., Morville, J., Rutkowski, L., Vieira, F. S. & Foltynowicz, A. Cavity-enhanced frequency comb vernier spectroscopy. Photonics 9, 222 (2022).

    Article  Google Scholar 

  16. Sulzer, P. et al. Cavity-enhanced field-resolved spectroscopy. Nat. Photonics 16, 692–697 (2022).

    Article  ADS  CAS  MATH  Google Scholar 

  17. Khodabakhsh, A. et al. Fourier transform and Vernier spectroscopy using an optical frequency comb at 3–5.4 μm. Opt. Lett. 41, 2541–2544 (2016).

    Article  ADS  PubMed  MATH  Google Scholar 

  18. Sterczewski, L. A. et al. Cavity-enhanced Vernier spectroscopy with a chip-scale mid-infrared frequency comb. ACS Photonics 9, 994–1001 (2022).

    Article  CAS  MATH  Google Scholar 

  19. Haakestad, M. W., Lamour, T. P., Leindecker, N., Marandi, A. & Vodopyanov, K. L. Intracavity trace molecular detection with a broadband mid-IR frequency comb source. J. Opt. Soc. Am. B 30, 631–640 (2013).

    Article  ADS  CAS  Google Scholar 

  20. Markus, C. R. et al. Cavity-enhanced dual-comb spectroscopy in the molecular fingerprint region using free-running quantum cascade lasers. J. Opt. Soc. Am. B 41, E56–E64 (2024).

    Article  ADS  CAS  MATH  Google Scholar 

  21. Adler, F., Thorpe, M. J., Cossel, K. C. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Annu. Rev. Anal. Chem. 3, 175–205 (2010).

    Article  CAS  Google Scholar 

  22. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Okeefe, A. & Deacon, D. A. G. Cavity ring-down optical spectrometer for absorption-measurements using pulsed laser sources. Rev. Sci. Instrum. 59, 2544–2551 (1988).

    Article  ADS  CAS  Google Scholar 

  24. Lisak, D. et al. Dual-comb cavity ring-down spectroscopy. Sci. Rep. 12, 2377 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  25. Dubroeucq, R. & Rutkowski, L. Optical frequency comb Fourier transform cavity ring-down spectroscopy. Opt. Express 30, 13594–13602 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Costello, B. D. et al. A review of the volatiles from the healthy human body. J. Breath Res. 8, 014001 (2014).

    Article  CAS  MATH  Google Scholar 

  27. Sherwin, E. D. et al. US oil and gas system emissions from nearly one million aerial site measurements. Nature 627, 328–334 (2024).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  28. Anenberg, S. C. et al. Impacts and mitigation of excess diesel-related NOx emissions in 11 major vehicle markets. Nature 545, 467–471 (2017).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  29. van Groenigen, K. J., Osenberg, C. W. & Hungate, B. A. Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature 475, 214–216 (2011).

    Article  ADS  PubMed  MATH  Google Scholar 

  30. Deshmukh, C. S. et al. Net greenhouse gas balance of fibre wood plantation on peat in Indonesia. Nature 616, 740–746 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  31. Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330–1332 (2009).

    Article  ADS  PubMed  Google Scholar 

  32. Dweik, R. A. et al. An official ATS clinical practice guideline: interpretation of exhaled nitric oxide levels (FENO) for clinical applications. Am. J. Respir. Crit. Care Med. 184, 602–615 (2011).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  33. Lundberg, J. O. N. et al. High nitric-oxide production in human paranasal sinuses. Nat. Med. 1, 370–373 (1995).

    Article  CAS  PubMed  MATH  Google Scholar 

  34. Andersson, J. A., Uddman, R. & Cardell, L. O. Carbon monoxide is endogenously produced in the human nose and paranasal sinuses. J Allergy Clin. Immunol. 105, 269–273 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Mitsui, T., Miyamura, M., Matsunami, A., Kitagawa, K. & Arai, N. Measuring nitrous oxide in exhaled air by gas chromatography and infrared photoacoustic spectrometry. Clin. Chem. 43, 1993–1995 (1997).

    Article  CAS  PubMed  Google Scholar 

  36. Costello, B. P. J. D., Ledochowski, M. & Ratcliffe, N. M. The importance of methane breath testing: a review. J. Breath Res. 7, 024001 (2013).

    Article  Google Scholar 

  37. Wang, T. S., Pysanenko, A., Dryahina, K., Spanel, P. & Smith, D. Analysis of breath, exhaled via the mouth and nose, and the air in the oral cavity. J. Breath Res. 2, 037013 (2008).

    Article  ADS  PubMed  Google Scholar 

  38. Smith, D. & Spanel, P. Pitfalls in the analysis of volatile breath biomarkers: suggested solutions and SIFT-MS quantification of single metabolites. J. Breath Res. 9, 022001 (2015).

    Article  ADS  PubMed  MATH  Google Scholar 

  39. Nielsen, G. D. & Wolkoff, P. Cancer effects of formaldehyde: a proposal for an indoor air guideline value. Arch. Toxicol. 84, 423–446 (2010).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  40. Winkowski, M. & Stacewicz, T. Optical detection of formaldehyde in air in the 3.6 μm range. Biomed. Opt. Express 11, 7019–7031 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  41. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nat. Photonics 4, 55–57 (2010).

    Article  ADS  CAS  MATH  Google Scholar 

  42. Foltynowicz, A., Ban, T., Maslowski, P., Adler, F. & Ye, J. Quantum-noise-limited optical frequency comb spectroscopy. Phys. Rev. Lett. 107, 233002 (2011).

    Article  ADS  PubMed  Google Scholar 

  43. Xia, Q. et al. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat. Commun. 14, 6655 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. López-Lorente, A. I. & Mizaikoff, B. Mid-infrared spectroscopy for protein analysis: potential and challenges. Anal. Bioanal. Chem. 408, 2875–2889 (2016).

    Article  PubMed  MATH  Google Scholar 

  45. Spanel, P. & Smith, D. Quantification of trace levels of the potential cancer biomarkers formaldehyde, acetaldehyde and propanol in breath by SIFT-MS. J. Breath Res. 2, 046003 (2008).

    Article  ADS  PubMed  MATH  Google Scholar 

  46. Truong, G.-W. et al. Mid-infrared supermirrors with finesse exceeding 400 000. Nat. Commun. 14, 7846 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  47. Suh, M. G., Yang, Q. F., Yang, K. Y., Yi, X. & Vahala, K. J. Microresonator soliton dual-comb spectroscopy. Science 354, 600–603 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  48. Muraviev, A. V., Smolski, V. O., Loparo, Z. E. & Vodopyanov, K. L. Massively parallel sensing of trace molecules and their isotopologues with broadband subharmonic mid-infrared frequency combs. Nat. Photonics 12, 209–214 (2018).

    Article  ADS  CAS  Google Scholar 

  49. Tian, L. et al. Gas phase multicomponent detection and analysis combining broadband dual-frequency comb absorption spectroscopy and deep learning. Commun. Eng. 2, 54 (2023).

    Article  PubMed Central  MATH  Google Scholar 

  50. Zhu, F. et al. Mid-infrared dual frequency comb spectroscopy based on fiber lasers for the detection of methane in ambient air. Laser Phys. Lett. 12, 095701 (2015).

    Article  ADS  MATH  Google Scholar 

  51. Johnson, T. A. & Diddams, S. A. Mid-infrared upconversion spectroscopy based on a Yb:fiber femtosecond laser. Appl. Phys. B 107, 31–39 (2012).

    Article  ADS  CAS  Google Scholar 

  52. Hjältén, A., Foltynowic, A. & Sadiek, I. Line positions and intensities of the ν1 band of 12CH3I using mid-infrared optical frequency comb Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 306, 108646 (2023).

    Article  Google Scholar 

  53. Zuo, Z. et al. Broadband mid-infrared molecular spectroscopy based on passive coherent optical-optical modulated frequency combs. Photonics Res. 9, 1358–1368 (2021).

    Article  MATH  Google Scholar 

  54. Tomaszewska-Rolla, D. et al. Mid-infrared optical frequency comb spectroscopy using an all-silica antiresonant hollow-core fiber. Opt. Express 32, 10679–10689 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Adler, F. et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–21872 (2010).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  56. Sterczewski, L. A. et al. Mid-infrared dual-comb spectroscopy with interband cascade lasers. Opt. Lett. 44, 2113–2116 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  57. Komagata, K. N., Wittwer, V. J., Südmeyer, T., Emmenegger, L. & Gianella, M. Absolute frequency referencing for swept dual-comb spectroscopy with midinfrared quantum cascade lasers. Phys. Rev. Res. 5, 013047 (2023).

    Article  CAS  Google Scholar 

  58. Hjältén, A. et al. Optical frequency comb Fourier transform spectroscopy of 14N216O at 7.8 µm. J. Quant. Spectrosc. Radiat. Transf. 271, 107734 (2021).

    Article  MATH  Google Scholar 

  59. Germann, M. et al. A methane line list with sub-MHz accuracy in the 1250 to 1380 cm−1 range from optical frequency comb Fourier transform spectroscopy. J. Quant. Spectrosc. Radiat. Transf. 288, 108252 (2022).

    Article  CAS  MATH  Google Scholar 

  60. Dawson, B. et al. Measurements of methane and nitrous oxide in human breath and the development of UK scale emissions. PLoS One 18, e0295157 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wang, Z. N. & Wang, C. J. Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. J. Breath Res. 7, 037109 (2013).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  62. Turner, C., Spanel, P. & Smith, D. A longitudinal study of methanol in the exhaled breath of 30 healthy volunteers using selected ion flow tube mass spectrometry, SIFT-MS. Physiol. Meas. 27, 637–648 (2006).

    Article  PubMed  MATH  Google Scholar 

  63. Dryahina, K., Smith, D. & Spanel, P. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 24, 1296–1304 (2010).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  64. Paredi, P., Kharitonov, S. A. & Barnes, P. J. Elevation of exhaled ethane concentration in asthma. Am. J. Respir. Crit. Care Med. 162, 1450–1454 (2000).

    Article  CAS  PubMed  Google Scholar 

  65. Cunnington, A. J. & Hormbrey, P. Breath analysis to detect recent exposure to carbon monoxide. Postgrad. Med. J. 78, 233–237 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Poirson, J., Bretenaker, F., Vallet, M. & LeFloch, A. Analytical and experimental study of ringing effects in a Fabry–Perot cavity. Application to the measurement of high finesses. J. Opt. Soc. Am. B 14, 2811–2817 (1997).

    Article  ADS  CAS  Google Scholar 

  67. Wysocki, G. & Weidmann, D. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser. Opt. Express 18, 26123–26140 (2010).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  68. Schunemann, P. G., Zawilski, K. T., Pomeranz, L. A., Creeden, D. J. & Budni, P. A. Advances in nonlinear optical crystals for mid-infrared coherent sources. J. Opt. Soc. Am. B 33, D36–D43 (2016).

    Article  CAS  Google Scholar 

  69. Iwakuni, K. et al. Phase-stabilized 100 mW frequency comb near 10 μm. Appl. Phys. B 124, 128 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  70. Vasilyev, S. et al. Longwave infrared (6.6–11.4 μm) dual-comb spectroscopy with 240,000 comb-mode-resolved data points at video rate. Opt. Lett. 48, 2273–2276 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  71. Smolski, V. et al. Half-Watt average power femtosecond source spanning 3–8 μm based on subharmonic generation in GaAs. Appl. Phys. B 124, 101 (2018).

    Article  ADS  Google Scholar 

  72. Heckl, O. H. et al. Three-photon absorption in optical parametric oscillators based on OP-GaAs. Opt. Lett. 41, 5405–5408 (2016).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  73. Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6-6.1μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20, 7046–7053 (2012).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  74. Vodopyanov, K. L., Sorokin, E., Sorokina, I. T. & Schunemann, P. G. Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator. Opt. Lett. 36, 2275–2277 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  75. Newbury, N. R., Coddington, I. & Swann, W. Sensitivity of coherent dual-comb spectroscopy. Opt. Express 18, 7929–7945 (2010).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  76. Harris, P. A. et al. Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42, 377–381 (2009).

    Article  PubMed  MATH  Google Scholar 

  77. Harris, P. A. et al. The REDCap consortium: building an international community of software platform partners. J. Biomed. Inform. 95, 103208 (2019).

    Article  PubMed  PubMed Central  MATH  Google Scholar 

  78. Gordon, I. E. et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 277, 107949 (2022).

    Article  CAS  MATH  Google Scholar 

  79. Drabinska, N. et al. A literature survey of all volatiles from healthy human breath and bodily fluids: the human volatilome. J. Breath Res. 15, 034001 (2021).

    Article  MATH  Google Scholar 

  80. Liang, Q., Bisht, A., Scheck, A., Schunemann, P. G. & Ye. J. Data for modulated ringdown comb interferometry for sensing of highly complex gases. Zenodo https://doi.org/10.5281/zenodo.14254339 (2025).

Download references

Acknowledgements

We thank G. B. Rieker, S. A. Diddams, T. Q. Bui, O. H. Heckl, A. J. Fleisher, P. B. Changala and D. J. Nesbitt for helpful discussions. This work is supported by AFOSR FA9550-19-1-0148, NIST, NSF QLCI OMA–2016244 and NSF PHY-2317149.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the manuscript writing and results interpretation. Q.L. and J.Y. conceived the modulated ringdown comb interferometry technique. Q.L., A.B. and A.S. designed and constructed the spectroscopy setup and collected and analysed the spectroscopy data. The 5-µm optical parametric oscillator comb was designed and constructed by Q.L. using the zinc germanium phosphide nonlinear optical crystal provided by P.G.S. The research work was supervised by J.Y.

Corresponding authors

Correspondence to Qizhong Liang or Jun Ye.

Ethics declarations

Competing interests

A patent has been submitted for the technique of modulated ringdown comb interferometry by Q.L. and J.Y., both affiliated with JILA. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Cavity swept lock on comb-cavity frequency detuning.

For this figure, intracavity dispersion from molecules and mirrors and piezo hysteresis associated with the cavity length modulation are omitted for ease of discussion. a, Servo schematic. Error signals generated from demodulating the observed cavity transmission bursts at the even and odd harmonics of the cavity length modulation frequency ωm are used for ensuring that comb frequencies (frep and fceo) and cavity FSR can all be precisely stabilized to each other. Through further locking the frep to an external frequency reference, the absolute frequencies for frep, fceo and FSR can be fixed. To explain why the transmission bursts can be demodulated at even or odd harmonics of ωm for respectively locking either frep–FSR frequency detuning or absolute frequency drift in fceo, consider three different cases shown in bd. The triangle waves in dotted lines represent the cavity length periodic sweep. Red, green and blue curves represent transmission bursts generated from three different comb lines. Thick black curve takes the sum of the three comb signals and represents the time-dependent signal measured by a photodiode placed at the cavity transmission side. For each case, the intensity spectrum from Fourier transform of the black curve time signal is shown to the right. Comparing b with c, when frep–FSR frequency detuning is non-zero, the black curve observed from one consecutive cavity upsweep and downsweep form a base pattern repeating at rate ωm. This leads to non-zero intensity measured at odd harmonics of ωm. Comparing b with d, the slow drift in fceo can result in comb lines appearing on cavity resonances sequentially. The black curve becomes wider in shape and its Fourier decomposition requires less intense high-frequency components. Thus, the even harmonics decrease in intensity (excluding the zeroth order, which will not change).

Extended Data Fig. 2 Cavity swept lock on molecular and mirror dispersion.

a, A simulation of ambient air absorption spectrum over 2,700–3,330 cm−1, considering only the three most intense absorbers, HDO, CH4 and H2O, at concentrations of 1.6 ppm, 2.1 ppm and 0.2%, respectively, matched to our measured data presented in the main text. b, The corresponding intracavity refractive index spectrum calculated from a based on the Kramers–Kronig relations. It is non-rigorously assumed that molecular absorption is zero outside the plotted spectral range. Variation in the refractive index of more than 4 × 10−7 can be seen. c, Phase delay per reflection from a mirror surface. The data are obtained from the vendor for the 3-μm cavity used in this work. We arbitrarily vertically offset the entire curve by a constant so that the phase delay is zero at the rightmost wavenumber (3,330 cm−1). d, Cavity resonance frequency distribution calculated on the basis of the molecular dispersion data in b and mirror dispersion data in c, using equation (2) shown in Methods. For our comb-cavity main resonance at cavity length equal to 0.548737 m, which allows all comb lines on cavity resonance simultaneously if intracavity dispersion is absent, detuning the cavity length by about λ/2 allows one to go to the side resonance, in which λ is the laser wavelength. Owing to the presence of intracavity dispersion, neither the main nor the side cavity resonances are a vertical straight line that will allow the comb instantaneous bandwidth to be coupled into the cavity simultaneously. In our presented data, molecular dispersion spreads the resonance cavity length either left or right every time a strong absorption line is scanned across, whereas mirror dispersion shifts the resonance cavity length to the left, which is slowly increasing with the decrease in wavenumber. At this level of dispersion, a swept lock must be used: a particular comb line is guaranteed to be coupled through the cavity if the modulation depth is no less than λ/2. For example, when modulating around the main cavity resonance, the modulation depth should be set sufficiently larger than the variation in the resonance cavity length caused by dispersion, but less than λ/2 to avoid comb on cavity resonance from the side resonance. This is indicated by the purple shaded box. In actual experiments, it is not necessarily required to engage cavity swept lock to the main resonance. Side resonances can be used as well. This can be used as a strategy to counter the mirror dispersion effect to reduce the variation in resonance cavity length.

Extended Data Fig. 3 A complete data processing workflow of MRCI.

The step-by-step workflow of MRCI for the processing of the raw interferogram data to obtain broadband cavity ringdown values. See Methods for details.

Extended Data Fig. 4 Interferogram data.

a, Experimental interferogram raw data collected as a function of time from the two photodetectors measuring the cavity transmitted comb light (red and blue). The black trace is the balanced output obtained from data post-processing. b, Zoom-in of a into ±2 ms. c, Fourier-transformed spectra for data in a over the time span of 20 ms. Signal carriers at m ± ωi and non-cosine modulated terms at m are labelled. For these data, ωm = 13 kHz and ωi ≈ 34 kHz. All traces in ac are vertically offset for clarity.

Extended Data Fig. 5 The thulium–zinc germanium phosphide OPO comb.

a, The OPO cavity geometry. Cavity mirrors are labelled M1–M6. Pump light is injected from M1 and idler light is out-coupled from M4. Coarse and fine cavity length control are achieved with a picomotor and a piezo mounted on M5 and M6, respectively. b, Power dependence measured for the idler on the pump, when the idler is tuned to 2,040 cm−1. The highest idler average power of 214 mW is measured at the pump power of 1,530 mW. The threshold pump power is 340(50) mW. Slope power efficiency is 19(1)% and photon conversion efficiency is 49(2)%. c, Table summarizing the crystal and mirrors specifications. AOI, angle of incidence; ROC, radius of curvature.

Extended Data Fig. 6 Cavity ringdown at comb-mode resolution.

a, Spectroscopy data collected at instrument resolution of 0.20 GHz for resolving the cavity transmitted comb lines spaced at 0.27 GHz frequency interval. Measurement is performed for calibrated 1.04(5) ppm CH4 diluted in nitrogen at 100 Torr and 20 °C. Rovibrational absorption lines have a median width at about 0.61 GHz calculated on the basis of HITRAN data, which is considerably larger than the comb spacing. Spectroscopy data are an average from a total of 256 interferograms collected at 7.5 s each. Zero padding is used to oversample at one-tenth of the instrument resolution to accurately locate the comb line frequencies. Only the leading five Fourier harmonics are plotted for clarity. The right panel is the zoom-in to near 3,018.22 cm−1. b, Ringdown absorption data determined from a. Stem lines in blue highlight the absorption coefficients measured by different comb lines. The data spanning 2 cm−1 coverage uniformly sampled by 219 comb lines is globally fitted to the HITRAN database plotted in orange. Fitted concentration yields 0.97(5) ppm. We further fit each rovibrational absorption line to a Voigt profile (black). For this analysis, Gaussian linewidths are fixed at the calculated values based on HITRAN data at 20 °C. Fitted concentration is used as the true methane concentration. c, Molecular parameters for the Lorentzian half width at half maximum (HWHM) widths and line intensities are determined for individual rovibrational absorption lines. Experimental data in black are compared with HITRAN data in orange. Uncertainties in the HITRAN database for which linewidths reported at about 10% and line intensities at about 5% are indicated. Vertical orange dashed lines are a guide to the eye aligning extracted molecular parameters to their corresponding rovibrational absorption lines. d, Spectroscopy data collected at the modest instrument resolution of 0.80 GHz. In contrast to the measured data at comb-mode resolution in b, the two close-lying rovibrational absorption lines near 3,018.2 cm−1 are less robustly resolved owing to the larger spectral resolution. Global fit to the HITRAN database yields 1.00(5) ppm fitted concentration for methane. To summarize, our data confirm: (1) both 0.80 GHz modest resolution or comb-mode resolution yield measured concentrations in good agreement with the calibrated value and (2) at comb-mode resolution, molecular parameters further extracted for absorption linewidths and line intensities are also in good agreement with the reported values from the HITRAN database.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Q., Bisht, A., Scheck, A. et al. Modulated ringdown comb interferometry for sensing of highly complex gases. Nature 638, 941–948 (2025). https://doi.org/10.1038/s41586-024-08534-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08534-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing