Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Total synthesis of 25 picrotoxanes by virtual library selection

Abstract

The synthesis of a complex molecule begins from an initial design stage1,2,3,4 in which possible routes are triaged by strategy and feasibility, on the basis of analogy to similar reactions2,3. However, as molecular complexity increases, predictability decreases5; inevitably, even experienced chemists resort to trial and error to identify viable intermediates en route to the target molecule. We encountered such a problem in the synthesis of picrotoxane sesquiterpenes in which pattern-recognition methods anticipated success, but small variations in structure led to failure. Here, to solve this problem but avoid tedious guess-and-check experimentation, we built a virtual library of elusive late-stage intermediate analogues that were triaged by reactivity and altered the synthesis pathway. The efficiency of this method led to concise routes to 25 naturally occurring picrotoxanes. Costly density-functional-theory transition-state calculations were replaced with faster reactant parameterizations to increase scalability and, in this case, inform the mechanism. This approach can serve as an add-on search to human or computer-assisted synthesis planning applicable to high-complexity targets and/or steps with little representation in the literature or reaction databases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observations and study design.
Fig. 2: Synthesis entry and virtual library.
Fig. 3: Synthesis of three picrotoxanes using calculated intermediates.
Fig. 4: Parameterization and prediction.
Fig. 5: Navigation of chemical space aided by virtual library selection.

Similar content being viewed by others

Data availability

All data are made available in the main text or Supplementary Information, including experimental procedures, copies of NMR spectra and X-ray structure reports. Structural parameters are available from the Cambridge Crystallographic Data Centre (CCDC) under the following reference numbers: des-Bz 19, 2250952; (+)-tutin (1), 2304983; 21, 2304987; SI-6′, 2303677.

Code availability

The code used in Figs. 4 and  5 is in the Supplementary Information (page 203). The source code for AutoDFT is available on Zenodo at https://doi.org/10.5281/zenodo.14366481 (ref. 49).

References

  1. Corey, E. J. & Wipke, W. T. Computer-assisted design of complex organic syntheses. Science 166, 178–192 (1969).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  2. Szymkuć, S. et al. Synthetic planning: the end of the beginning. Angew. Chem. Int. Ed. 55, 5904–5937 (2016).

    Article  MATH  Google Scholar 

  3. Coley, C. W., Rogers, L., Green, W. H. & Jensen, K. F. Computer-assisted retrosynthesis based on molecular similarity. ACS Cent. Sci. 3, 1237–1245 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cadeddu, A., Wylie, E. K., Jurczak, J., Wampler-Doty, M. & Grzybowski, B. A. Organic chemistry as a language and the implications of chemical linguistics for structural and retrosynthetic analyses. Angew. Chem. Int. Ed. 53, 8108–8112 (2014).

    Article  CAS  Google Scholar 

  5. Strieth-Kalthoff, F. et al. Artificial intelligence for retrosynthetic planning needs both data and expert knowledge. J. Am. Chem. Soc. 146, 11005–11017 (2024).

    CAS  MATH  Google Scholar 

  6. Gössinger, E. in Progress in the Chemistry of Organic Natural Products Vol. 93 (eds Douglas Kinghorn, A., Falk, H. & Kobayashi, J.) 71–210 (Springer, 2010).

  7. Olsen, R. W. & Sieghart, W. International union of pharmacology. LXX. Subtypes of γ-aminobutyric acid A receptors: classification on the basis of subunit composition, pharmacology, and function. Update. Pharmacol. Rev. 60, 243–260 (2008).

    Article  CAS  PubMed  MATH  Google Scholar 

  8. Ozoe, Y. et al. Picrodendrin and related terpenoid antagonists reveal structural differences between ionotropic GABA receptors of mammals and insects. Bioorg. Med. Chem. 6, 481–491 (1998).

    Article  CAS  PubMed  MATH  Google Scholar 

  9. Watanabe, I., Koike, K., Satou, T. & Nikaido, T. Nematocidal activity of picrodendrins against a species of Diplogastridae. Biol. Pharm. Bull. 22, 1310 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Fernandez, F. et al. Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat. Neurosci. 10, 411 (2007).

    Article  CAS  PubMed  MATH  Google Scholar 

  11. Pressly, B. et al. Comparison of the toxicokinetics of the convulsants picrotoxinin and tetramethylenedisulfotetramine (TETS) in mice. Arch. Toxicol. 94, 1995–2007 (2020).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  12. Wakamatsu, K., Kigoshi, H., Niiyama, K., Niwa, H. & Yamada, K. Stereocontrolled total synthesis of (+)-tutin and (+)-asteromurin A, toxic picrotoxane sesquiterpenes. Tetrahedron 42, 5551–5558 (1986).

    Article  CAS  Google Scholar 

  13. Krische, M. J. & Trost, B. M. Transformations of the picrotoxanes: the synthesis of corianin and structural analogues from picrotoxinin. Tetrahedron 54, 7109–7120 (1998).

    Article  CAS  MATH  Google Scholar 

  14. Trost, B. & Krische, M. J. Palladium-catalyzed enyne cyclo-isomerization reaction in an asymmetric approach to the picrotoxane sesquiterpenes. 2. Second-generation total syntheses of corianin, picrotoxinin, picrotin, and methyl picrotoxate. J. Am. Chem. Soc. 121, 6131 (1999).

    Article  CAS  Google Scholar 

  15. Niwa, H. et al. Stereocontrolled total synthesis of (−)-picrotoxinin and (+)-coriamyrtin via a common isotwistane intermediate. J. Am. Chem. Soc. 106, 4547–4552 (1984).

    Article  CAS  MATH  Google Scholar 

  16. Tanaka, K., Uchiyama, F., Sakamoto, K. & Inubushi, Y. Stereocontrolled total synthesis of (±)-coriamyrtin. J. Am. Chem. Soc. 104, 4965–4967 (1982).

    Article  CAS  MATH  Google Scholar 

  17. Ikeuchi, K. et al. Total synthesis of (+)-coriamyrtin via a desymmetrizing strategy involving a 1,3-cyclopentanedione moiety. Org. Lett. 25, 2751–2755 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  18. Tong, G. et al. C5 methylation confers accessibility, stability and selectivity to picrotoxinin. Nat. Commun. 14, 8308 (2023).

    Article  ADS  PubMed  PubMed Central  MATH  Google Scholar 

  19. Tong, G. & Shenvi, R. A. Revision of the unstable picrotoxinin hydrolysis product. Angew. Chem. Int. Ed. 60, 19113 (2021).

    Article  CAS  MATH  Google Scholar 

  20. Fields, B. A., Reeve, J., Bartholomaeus, A. & Mueller, U. Human pharmacokinetic study of tutin in honey; a plant-derived neurotoxin. Food Chem. Toxicol. 72, 234–241 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Dorigo, A. E. & Houk, K. N. Transition structures for intramolecular hydrogen atom transfers: the energetic advantage of seven-membered over six-membered transition structures. J. Am. Chem. Soc. 109, 2195–2197 (1987).

    Article  CAS  MATH  Google Scholar 

  22. Dorigo, A. E. & Houk, K. N. On the relationship between proximity and reactivity. An ab initio study of the flexibility of the OH· + CH4 hydrogen abstraction transition state and a force-field model for the transition states of intramolecular hydrogen abstractions. J. Org. Chem. 53, 1650–1664 (1988).

    Article  CAS  Google Scholar 

  23. Crossley, S. W. M., Tong, G., Lambrecht, M., Burdge, H. E. & Shenvi, R. A. Synthesis of picrotoxinin via late-stage strong bond activations. J. Am. Chem. Soc. 142, 11376–11381 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Boto, A., Hernández, D., Hernández, R. & Suárez, E. β-Fragmentation of primary alkoxyl radicals versus hydrogen abstraction: synthesis of polyols and α,ω-differently substituted cyclic ethers from carbohydrates. J. Org. Chem. 68, 5310–5319 (2003).

    Article  CAS  PubMed  MATH  Google Scholar 

  25. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    Article  CAS  PubMed  MATH  Google Scholar 

  26. Bakanas, I., Lusi, R. F., Wiesler, S., Cooke, J. H. & Sarpong, R. Strategic application of C–H oxidation in natural product total synthesis. Nat. Rev. Chem. 7, 783–799 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Salatin, T. D. & Jorgensen, W. L. Computer-assisted mechanistic evaluation of organic reactions. 1. Overview. J. Org. Chem. 45, 2043–2051 (1980).

    Article  CAS  MATH  Google Scholar 

  28. Wei, J. N., Duvenaud, D. & Aspuru-Guzik, A. Neural networks for the prediction of organic chemistry reactions. ACS Cent. Sci. 2, 725–732 (2016).

    Article  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  29. Zhang, P. et al. A neural network model informs the total synthesis of clovane sesquiterpenoids. Nat. Synth. 2, 527–534 (2023).

    Article  ADS  CAS  MATH  Google Scholar 

  30. Lin, Y., Zhang, R., Wang, D. & Cernak, T. Computer-aided key step generation in alkaloid total synthesis. Science 379, 453–457 (2023).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  31. Murphy, S. K., Park, J.-W., Cruz, F. A. & Dong, V. M. Rh-catalyzed C–C bond cleavage by transfer hydroformylation. Science 347, 56–60 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Eckart, C. The theory of collisions. Phys. Rev. 35, 1303 (1930).

    Article  ADS  CAS  MATH  Google Scholar 

  33. Garrett, B. C. & Truhlar, D. G. Semiclassical tunneling calculations. J. Phys. Chem. 83, 2921–2926 (1979).

    Article  CAS  MATH  Google Scholar 

  34. Eyring, H. The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935).

    Article  ADS  CAS  MATH  Google Scholar 

  35. Truhlar, D. G., Hase, W. L. & Hynes, J. T. Current status of transition-state theory. J. Phys. Chem. 87, 2664–2682 (1983).

    Article  CAS  MATH  Google Scholar 

  36. Brun, P. & Waegell, B. Heterocyclisation intramoleculaire d’alcools possedant un squelette cedranique. Oxydation par le tetraacetate de plomb et par l’oxyde de mercure et le brome. Tetrahedron 32, 1137–1145 (1976).

    Article  CAS  Google Scholar 

  37. Zhao, Y. & Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008).

    Article  CAS  Google Scholar 

  38. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  MATH  Google Scholar 

  39. Meng, S.-S. et al. Chiral phosphoric acid catalyzed highly enantioselective desymmetrization of 2-substituted and 2,2-disubstituted 1,3-diols via oxidative cleavage of benzylidene acetals. J. Am. Chem. Soc. 136, 12249–12252 (2014).

    Article  CAS  PubMed  Google Scholar 

  40. Forbes, C. P., Goosen, A. & Laue, H. A. H. Hypoiodite reaction: kinetic study of the reaction of 1,1-diphenylethylene with mercury(II) oxide-iodine. J. Chem. Soc. Perkin I 2350–2353 (1974).

  41. Wang, J. B. & Suginome, H. Intramolecular β, γ-addition of allylic alkoxyl radicals. A new general synthesis of α-lodoepoxides by photolysis of allylic alcohol hypoiodites in the presence of mercury(II) oxide, iodine and pyridine in benzene. J. Chem. Soc. Chem. Commun. 1629–1631 (1990).

  42. Frisch, M. J., Pople, J. A. & Binkley, J. S. Self‐consistent molecular orbital methods 25. Supplementary functions for Gaussian basis sets. J. Chem. Phys. 80, 3265–3269 (1984).

    Article  ADS  CAS  MATH  Google Scholar 

  43. Liu, F. et al. Hydrogen abstraction by alkoxyl radicals: computational studies of thermodynamic and polarity effects on reactivities and selectivities. J. Am. Chem. Soc. 144, 6802–6812 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  44. Shen, Y. et al. Automation and computer-assisted planning for chemical synthesis. Nat. Rev. Methods Primers 1, 23 (2021).

    Article  CAS  MATH  Google Scholar 

  45. Betinol, I. O., Kuang, Y. & Reid, J. P. Guiding target synthesis with statistical modeling tools: a case study in organocatalysis. Org. Lett. 24, 1429–1433 (2022).

    Article  CAS  PubMed  MATH  Google Scholar 

  46. Boger, D. L. et al. Total synthesis of the vancomycin aglycon. J. Am. Chem. Soc. 121, 10004–10011 (1999).

    Article  CAS  MATH  Google Scholar 

  47. Zhong, W., Yang, Z. & Chen, C. Y.-C. Retrosynthesis prediction using an end-to-end graph generative architecture for molecular graph editing. Nat. Commun. 14, 3009 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  48. Ihlenfeldt, W.-D. & Gasteiger, J. Computer-assisted planning of organic syntheses: the second generation of programs. Angew. Chem. Int. Ed. 34, 2613–2633 (1995).

    Article  CAS  MATH  Google Scholar 

  49. Ting, S. I. shenvilab/autodft: AutoDFT. Zenodo https://doi.org/10.5281/zenodo.14366481 (2024).

Download references

Acknowledgements

We acknowledge J. S. Chen, B. Sanchez, Q. N. Wang, J. Lee and B. Orzolek for analysis; L. Pasternack, G. J. Kroon and D.-H. Huang for assistance with NMR spectroscopy; M. Gembicky, J. Bailey and the entire UCSD Crystallography Facility for X-ray crystallographic analysis; and J.-C. Ducom and L. Dong for assistance with the computing cluster. We thank S. Ting for conversations about statistical modelling; and K. Engle, T. Cernak and D. Wang for computational suggestions. Funding was provided by the National Institutes of Health (GM122606) and the Skaggs Graduate School of Chemical and Biological Sciences (Dale Boger Endowed Graduate Fellowship to C.L.).

Author information

Authors and Affiliations

Authors

Contributions

R.A.S. and C.L. conceived the project. C.L. executed the combined computational and experimental work with guidance and verification by R.A.S., who also oversaw the research. R.A.S. and C.L. composed the paper, C.L. compiled the supplementary materials and R.A.S. provided editorial feedback and oversight.

Corresponding author

Correspondence to Ryan A. Shenvi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text, Figures, Tables and Data – see Contents page for details.

Peer Review file

Virtual Screening Cartesian Coordinates

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Shenvi, R.A. Total synthesis of 25 picrotoxanes by virtual library selection. Nature 638, 980–986 (2025). https://doi.org/10.1038/s41586-024-08538-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-08538-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing