Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Homogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs

Abstract

The electroluminescence performance of heavy-metal-free blue quantum dot (QD) light-emitting diodes (QLEDs) is much lower than that of state-of-the-art cadmium-based counterparts. Ecofriendly ZnSeTe QDs are an ideal alternative to cadmium-based blue QDs1,2, but face issues with colour impurity and inferior stability caused by the aggregated tellurium (Ten≥2) that dominates compositional inhomogeneity3,4. Here we developed an isoelectronic control strategy using congeneric sulfur coordinated with triphenyl phosphite (TPP-S) to construct homogeneous ZnSeTeS QDs with pure-blue emissions and near-unity photoluminescence quantum yield. TPP with low electron-donating capability promotes the reactivity balance among anionic precursors, favouring the growth of QDs with uniform composition. The acceptor-like S with high electronegativity weakens the hole localization of the Te atoms by interfering with their surrounding carriers, thereby suppressing the formation of Ten≥2 isoelectronic centres. Furthermore, the congeneric S increases the configurational entropy of the QDs and eliminates the stacking faults and oxygen defects, leading to improved structural stability and reduced non-radiative carrier density. Consequently, the resulting pure-blue QLEDs based on core–shell ZnSeTeS/ZnSe/ZnS QDs emitting at 460 nm show a high external quantum efficiency of 24.7%, a narrow linewidth of 17 nm, and long operational half-lifetime (T50) close to 30,000 hours at 100 cd cm−2, rivalling state-of-the-art cadmium-based blue QLEDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizations of QDs.
Fig. 2: PL dynamics and structural stability of QDs.
Fig. 3: Device performance.
Fig. 4: Device stability.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information. The source data files are available on figshare at https://doi.org/10.6084/m9.figshare.28166900 (ref. 50). Source data are provided with this paper.

References

  1. Kim, T. et al. Efficient and stable blue quantum dot light-emitting diode. Nature 586, 385–389 (2020).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  2. Lee, S.-H. et al. Heterostructural tailoring of blue ZnSeTe quantum dots toward high-color purity and high-efficiency electroluminescence. Chem. Eng. J. 429, 132464 (2022).

    Article  CAS  Google Scholar 

  3. Lee, Y. J. et al. Crystallographic and photophysical analysis on facet-controlled defect-free blue-emitting quantum dots. Adv. Mater. 36, 2311719 (2024).

    Article  CAS  Google Scholar 

  4. Imran, M. et al. Molecular additive-assisted tellurium homogenization in ZnSeTe quantum dots. Adv. Mater. 35, 2303528 (2023).

    Article  CAS  MATH  Google Scholar 

  5. Gao, M. et al. Bulk-like ZnSe quantum dots enabling efficient ultranarrow blue light-emitting diodes. Nano Lett. 21, 7252–7260 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Won, Y.-H. et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 575, 634–638 (2019).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  7. Dai, X. et al. Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  8. Deng, Y. et al. Solution-processed green and blue quantum-dot light-emitting diodes with eliminated charge leakage. Nat. Photon. 16, 505–511 (2022).

    Article  ADS  CAS  MATH  Google Scholar 

  9. Zhang, W. et al. Stable and efficient pure blue quantum-dot LEDs enabled by inserting an anti-oxidation layer. Nat. Commun. 15, 783 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  10. Chen, X. et al. Blue light-emitting diodes based on colloidal quantum dots with reduced surface–bulk coupling. Nat. Commun. 14, 284 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  11. Han, C.-Y. et al. More than 9% efficient ZnSeTe quantum dot-based blue electroluminescent devices. ACS Energy Lett. 5, 1568–1576 (2020).

    Article  CAS  MATH  Google Scholar 

  12. Bi, Y. et al. Reducing emission linewidth of pure-blue ZnSeTe quantum dots through shell engineering toward high color purity light-emitting diodes. Small 19, 2303247 (2023).

    Article  CAS  Google Scholar 

  13. Jang, E. P. et al. Synthesis of alloyed ZnSeTe quantum dots as bright, color-pure blue emitters. ACS Appl. Mater. Interfaces 11, 46062–46069 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. Cho, S. et al. Air-stable and environmentally friendly full color-emitting ZnSeTe/ZnSe/ZnS quantum dots for display applications. ACS Appl. Nano Mater. 5, 18905–18911 (2022).

    Article  CAS  Google Scholar 

  15. Chang, J. H. et al. Impact of morphological inhomogeneity on excitons states in highly mismatched alloy ZnSe1−xTex nanocrystals. J. Phys. Chem. Lett. 13, 11464–11472 (2022).

    Article  CAS  PubMed  Google Scholar 

  16. Cheng, C. et al. Near-unity quantum yield ZnSeTe quantum dots enabled by controlling shell growth for efficient deep-blue light-emitting diodes. Adv. Funct. Mater. 34, 2313811 (2024).

    Article  CAS  Google Scholar 

  17. Smith, A. M., Mohs, A. M. & Nie, S. Tuning the optical and electronic properties of colloidal nanocrystals by lattice strain. Nat. Nanotechnol. 4, 56–63 (2009).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  18. Lin, Y. C. et al. Time-resolved photoluminescence of isoelectronic traps in ZnSe1−xTex semiconductor alloys. Appl. Phys. Lett. 93, 241909 (2008).

    Article  ADS  Google Scholar 

  19. Sohn, S. H. & Hamakawa, Y. Binding energies of simple isoelectronic impurities in II–VI semiconductors. Phys. Rev. B 46, 9452–9460 (1992).

    Article  ADS  CAS  MATH  Google Scholar 

  20. Cai, W. et al. Emission mechanism of bright and eco-friendly ZnSeTe quantum dots. Adv. Opt. Mater. 12, 2301970 (2023).

    Article  Google Scholar 

  21. Zheng, Z. et al. Bromide decorated eco-friendly ZnSeTe/ZnSe/ZnS quantum dots for efficient blue light-emitting diodes. Adv. Mater. Interfaces 10, 2202241 (2022).

    Article  Google Scholar 

  22. Neumark, G. F., Kuskovsky, I. L. & Jiang, H. Wide Bandgap Light Emitting Materials and Devices (Wiley, 2007).

  23. Marcet, S., André, R. & Francoeur, S. Excitons bound to Te isoelectronic dyads in ZnSe. Phys. Rev. B 82, 235309 (2010).

    Article  ADS  Google Scholar 

  24. Ruberu, T. P. A. et al. Molecular control of the nanoscale: effect of phosphine–chalcogenide reactivity on CdS–CdSe nanocrystal composition and morphology. ACS Nano 6, 5348–5359 (2012).

    Article  CAS  PubMed  MATH  Google Scholar 

  25. Park, S. H. et al. Investigation of the crystallinity of N and Te codoped Zn-polar ZnO films grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 108, 093518 (2010).

    Article  ADS  MATH  Google Scholar 

  26. Kang, C. K. et al. Surface passivation by sulfur treatment of undoped p-CdTe (100). J. Appl. Phys. 88, 2013 (2000).

    Article  ADS  CAS  MATH  Google Scholar 

  27. Wu, J. et al. Temperature-dependent recombination dynamics and electroluminescence characteristics of colloidal CdSe/ZnS core/shell quantum dots. Appl. Phys. Lett. 119, 073303 (2021).

    Article  ADS  CAS  MATH  Google Scholar 

  28. Park, J., Won, Y.-H., Kim, T., Jang, E. & Kim, D. Electrochemical charging effect on the optical properties of InP/ZnSe/ZnS quantum dots. Small 16, 2003542 (2020).

    Article  CAS  MATH  Google Scholar 

  29. Kalytchuk, S., Zhovtiuk, O., Kershaw, S. V., Zbořil, R. & Rogach, A. L. Temperature-dependent exciton and trap-related photoluminescence of CdTe quantum dots embedded in a NaCl matrix: implication in thermometry. Small 12, 466–476 (2016).

    Article  CAS  PubMed  MATH  Google Scholar 

  30. Jha, P. P. & Guyot-Sionnest, P. Trion decay in colloidal quantum dots. ACS Nano 3, 1011–1015 (2009).

    Article  CAS  PubMed  MATH  Google Scholar 

  31. Xia, Y. et al. Vertically concentrated quantum wells enabling highly efficient deep-blue perovskite light-emitting diodes. Angew. Chem. Int. Ed. 63, e202403739 (2024).

    Article  CAS  Google Scholar 

  32. Yang, Y. et al. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures. Nat. Photon. 9, 259–266 (2015).

    Article  ADS  CAS  MATH  Google Scholar 

  33. Lee, K.-H. et al. Highly efficient, color-pure, color-stable blue quantum dot light-emitting devices. ACS Nano 7, 7295–7302 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Zhang, X., Li, D., Zhang, Z., Liu, H. & Wang, S. Constructing effective hole transport channels in cross-linked hole transport layer by stacking discotic molecules for high performance deep blue QLEDs. Adv. Sci. 9, 2200450 (2022).

    Article  CAS  Google Scholar 

  35. Wang, Y.-K. et al. Self-assembled monolayer-based blue perovskite LEDs. Sci. Adv. 9, eadh2140 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cai, F. et al. Defect passivation and electron band energy regulation of a ZnO electron transport layer through synergetic bifunctional surface engineering for efficient quantum dot light-emitting diodes. Nanoscale 15, 10677–10684 (2023).

    Article  CAS  PubMed  MATH  Google Scholar 

  37. Yoon, S.-Y. et al. High-efficiency blue and white electroluminescent devices based on non-Cd I–III–VI quantum dots. Nano Energy 63, 103869 (2019).

    Article  CAS  MATH  Google Scholar 

  38. Li, C. H. A. et al. Mixed Ruddlesden–Popper and Dion–Jacobson phase perovskites for stable and efficient blue perovskite LEDs. Adv. Funct. Mater. 33, 2303301 (2023).

    Article  CAS  Google Scholar 

  39. Ghorbani, A. et al. Changes in hole and electron injection under electrical stress and the rapid electroluminescence loss in blue quantum-dot light-emitting devices. Small 20, 2304580 (2024).

    Article  CAS  MATH  Google Scholar 

  40. Jeong, W. H. et al. In situ cadmium surface passivation of perovskite nanocrystals for blue LEDs. J. Mater. Chem. A 9, 26750–26757 (2021).

    Article  CAS  Google Scholar 

  41. Lee, S. et al. Brightening deep-blue perovskite light-emitting diodes: a path to Rec. 2020. Sci. Adv. 10, eadn8465 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jiang, K. Y. et al. Efficient deep-blue light-emitting diodes through decoupling of colloidal perovskite quantum dots. Adv. Mater. 36, 2404856 (2024).

    Article  Google Scholar 

  43. Jiang, Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 612, 679–684 (2022).

    Article  ADS  CAS  PubMed  MATH  Google Scholar 

  44. Zhang, L. et al. Manipulating local lattice distortion for spectrally stable and efficient mixed-halide blue perovskite LEDs. Angew. Chem. Int. Ed. 135, e202302184 (2023).

    Article  Google Scholar 

  45. Cai, F. et al. Charge carrier regulation for efficient blue quantum-dot light-emitting diodes via a high-mobility coplanar cyclopentane[b]thiopyran derivative. Nano Lett. 24, 5284–5291 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  MATH  Google Scholar 

  46. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  ADS  CAS  MATH  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Flores, E. M., Moreira, M. L. & Piotrowski, M. J. Structural and electronic properties of bulk ZnX (X=O, S, Se, Te), ZnF2, and ZnO/ZnF2: a DFT investigation within PBE, PBE+U, and hybrid HSE functionals. J. Phys. Chem. A 124, 3778–3785 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, Q. et al. Datasets for “Homogeneous ZnSeTeS quantum dots for efficient and stable pure blue LEDs”. figshare https://doi.org/10.6084/m9.figshare.28166900 (2025).

Download references

Acknowledgements

We acknowledge financial support from the Key Research and Development Program of China (2022YFB3602902 and 2024YFB3612404), the National Natural Science Foundation of China (62174104, 61804063 and 62404131), the Program of Shanghai Academic/Technology Research Leader (22XD1421200), the Shanghai Natural Science Foundation (23ZR1423300), the Shuguang Program of Shanghai Education Development Foundation, the Shanghai Municipal Education Commission (number 22SG40), the China Postdoctoral Science Foundation (2023M742197 and 2023M742198) and the Australian Research Council (ARC) Future Fellowship Scheme (GFT210100509). We thank the accelerator scientists and the staff of beamlines BL4B7A at BSRF, BL16U1at SSRF for providing the beam time and User Experiment Assist System of SSRF for their help.

Author information

Authors and Affiliations

Authors

Contributions

X.Y. conceived the idea and supervised the work. Q.W., F.C. and S.W. performed most of the synthesis and characterizations of the QDs. G.J. performed the high-angle annular dark-field scanning transmission electron microscopy measurements. Q.W., W.Y., W.H., Z.L. and W.C. carried out the device fabrication and characterizations. Y.Y. carried out the X-ray absorption spectroscopy measurements and directed the data analysis. F.C. and Q.W. wrote the paper, which was revised by X.Z., Jiaqi Zhang, Jianhua Zhang and X.Y. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Jiaqi Zhang, Jianhua Zhang or Xuyong Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Peter Reiss and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Ensemble PL spectra of QD cores.

PL spectra of ZnSeTe cores with various combinations of anionic precursors. Different emissive components were assigned to Ten=1 and Ten≥2 ICs. The third Gaussian curve is caused by the PL emission from higher-order Te ICs.

Source Data

Extended Data Fig. 2 Spectroscopic analyses by XAS.

a, d, Experimental Zn K-edge XANES spectra. b, e, Fourier-transformed k-space and c, f, R-space of the experimental Zn K-edge EXAFS signals and fitting curves. The Zn K-edge for both samples show apparent peaks around ~2 Å and the same coordination number of 4, which are assigned to the Zn-Se scattering.

Source Data

Extended Data Fig. 3 XPS spectra of QD cores.

a, Te 3 d of QD-1 core film measured depth profile with different etch times. b, Te 3 d (left) and S 2p (right) of QD-2 core film measured depth profile with different etch times. c, The relative atomic content of Te and S atoms in QD-1 and QD-2 cores as a function of etching depth.

Source Data

Extended Data Fig. 4 Morphology of QD-2.

a, TEM image of QD-2 core. Scale bar, 10 nm. b, TEM images and a selected-area diffraction (SAED) pattern of C/S/S QD-2. Scale bar, 50 nm in the left and 2 nm in the bottom right corner. The average sizes of QD-2 cores and C/S/S QD-2 are 4.1 ± 0.5 nm and 10.5 ± 1.0 nm, respectively. A clear SAED pattern between the (220) and (311) diffraction planes and lattice distance of 0.32 nm in (111) plane suggest good nucleation and shell growth of QD-2. c, EDS mapping images of Zn, Se, and S elements for C/S/S QD-2.

Source Data

Extended Data Fig. 5 PL spectra of C/S/S QD-2.

PL spectra of C/S/S QD-2 with an optimal S content of 3% as a function of various Te/(Se+Te+S) ratios. CTe, from 1 mol% to 10 mol%. Inset, photograph of QD-2 solutions under UV excitation.

Source Data

Extended Data Fig. 6 Device performance of QLEDs based on QD-2.

ad, EL spectra (a), J-L-V (b), EQE-J (c), and T50 lifetime (d) curves of ZnSeTeS-based devices at the EL peak of 468 nm.

Source Data

Extended Data Table 1 Device performance for recently reported pure blue LEDs

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and Tables 1–4.

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., Cao, F., Yu, W. et al. Homogeneous ZnSeTeS quantum dots for efficient and stable pure-blue LEDs. Nature 639, 633–638 (2025). https://doi.org/10.1038/s41586-025-08645-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08645-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing