Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transforming ceria into 2D clusters enhances catalytic activity

Abstract

Ceria nanoparticles supported on alumina are widely used in various catalytic reactions, particularly in conjunction with platinum group metals (PGMs)1,2,3,4,5,6,7,8,9. Here we found that treating these catalysts at temperatures between 750 and about 1,000 °C in the presence of CO and NO in steam (reactive treatment under reducing atmosphere) leads to the dispersion of ceria nanoparticles into high-density 2D (roughly one atomic layer thin) CexOy domains, as confirmed by microscopy, X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), infrared spectroscopy and density functional theory (DFT) calculations. These domains, which densely cover the alumina, exhibit substantially enhanced oxygen mobility and storage capacity, facilitating easier extraction of oxygen and the formation of Ce3+ sites and oxygen vacancies. As a result, these catalysts—whether with or without PGMs, such as Rh and Pt—show improved activity for several industrially important catalytic reactions, including NO and N2O reduction, as well as CO and NO oxidation, even after exposure to harsh ageing conditions. This study shows a catalyst architecture with superior redox properties under conditions that typically cause sintering, offering a pathway to more efficient metal–ceria catalysts for enhanced general catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic activity of CeAl catalysts.
Fig. 2: Microscopy characterization.
Fig. 3: Characterization and schematic.
Fig. 4: Catalytic activity of Rh/CeAl catalysts.

Similar content being viewed by others

Data availability

All data are available in the main text or the Supplementary Information and are also available from the corresponding authors on request. The structures from the DFT calculations are available at Zenodo: https://doi.org/10.5281/zenodo.14030546 (ref. 44). Source data are provided with this paper.

References

  1. Summers, J. C. & Ausen, S. A. Interaction of cerium oxide with noble metals. J. Catal. 58, 131–143 (1979).

    Article  CAS  Google Scholar 

  2. Trovarelli, A. Catalytic properties of ceria and CeO2-containing materials. Catal. Rev. Sci. Eng. 38, 439–520 (1996).

    Article  CAS  Google Scholar 

  3. Montini, T., Melchionna, M., Monai, M. & Fornasiero, P. Fundamentals and catalytic applications of CeO2-based materials. Chem. Rev. 116, 5987–6041 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. Gorte, R. J. Ceria in catalysis: from automotive applications to the water–gas shift reaction. AIChE J 56, 1126–1135 (2010).

    Article  CAS  ADS  Google Scholar 

  5. Rodriguez, J. A., Grinter, D. C., Liu, Z., Palomino, R. M. & Senanayake, S. D. Ceria-based model catalysts: fundamental studies on the importance of the metal–ceria interface in CO oxidation, the water–gas shift, CO2 hydrogenation, and methane and alcohol reforming. Chem. Soc. Rev. 46, 1824–1841 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  7. Meunier, F. C. et al. Synergy between metallic and oxidized Pt sites unravelled during room temperature CO oxidation on Pt/ceria. Angew. Chem. Int. Ed. 60, 3799–3805 (2021).

    Article  CAS  Google Scholar 

  8. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Vayssilov, G. N. et al. Support nanostructure boosts oxygen transfer to catalytically active platinum nanoparticles. Nat. Mater. 10, 310–315 (2011).

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Mudiyanselage, K. et al. Importance of the metal–oxide interface in catalysis: in situ studies of the water–gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem. Int. Ed. 52, 5101–5105 (2013).

    Article  CAS  Google Scholar 

  11. Daturi, M. et al. Evidence of a lacunar mechanism for deNOx activity in ceria-based catalysts. Phys. Chem. Chem. Phys. 3, 252–255 (2001).

    Article  CAS  Google Scholar 

  12. Datye, A. & Wang, Y. Atom trapping: a novel approach to generate thermally stable and regenerable single-atom catalysts. Natl Sci. Rev. 5, 630–632 (2018).

    Article  CAS  Google Scholar 

  13. Shyu, J. Z., Weber, W. H. & Gandhi, H. S. Surface characterization of alumina-supported ceria. J. Phys. Chem. 92, 4964–4970 (1988).

    Article  CAS  Google Scholar 

  14. Shyu, J. Z. et al. Characterization of Pd/γ-alumina catalysts containing ceria. J. Catal. 114, 23–33 (1988).

    Article  CAS  Google Scholar 

  15. Koleva, I. Z., Aleksandrov, H. A., Vayssilov, G. N., Duarte, R. & van Bokhoven, J. A. Relative stability and reducibility of CeO2 and Rh/CeO2 species on the surface and in the cavities of γ-Al2O3: a periodic DFT study. Phys. Chem. Chem. Phys. 17, 22389–22401 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. Khivantsev, K. et al. Economizing on precious metals in three-way catalysts: thermally stable and highly active single-atom rhodium on ceria for NO abatement under dry and industrially relevant conditions. Angew. Chem. Int. Ed. 60, 391–398 (2021).

    Article  CAS  Google Scholar 

  17. Bourges, P., Lunati, S. & Mabilon, G. N2O and NO2 formation during NO reduction on precious metal catalysts. Stud. Surf. Sci. Catal. 116, 213–222 (1998).

    Article  CAS  Google Scholar 

  18. Getsoian, A. B., Theis, J. R., Paxton, W. A., Lance, M. J. & Lambert, C. K. Remarkable improvement in low temperature performance of model three-way catalysts through solution atomic layer deposition. Nat. Catal. 2, 614–622 (2019).

    Article  CAS  Google Scholar 

  19. Henderson, M. A., Perkins, C. L., Engelhard, M., Thevuthasan, S. & Peden, C. H. F. Redox properties of water on the oxidized and reduced surfaces of CeO2(111). Surf. Sci. 526, 1–18 (2003).

    Article  CAS  ADS  Google Scholar 

  20. Kuchibhatla, S. et al. Influence of aging and environment on nanoparticle chemistry – implication to confinement effects in nanoceria. J. Phys. Chem. C 116, 14108–14114 (2012).

    Article  CAS  Google Scholar 

  21. Khivantsev, K., Jaegers, N. R., Kwak, J.-H., Szanyi, J. & Kovarik, L. Precise identification and characterization of catalytically active sites on the surface of γ-alumina. Angew. Chem. Int. Ed. 133, 17663–17671 (2021).

    Article  ADS  Google Scholar 

  22. Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Mihaylov, M. Y. et al. FTIR and density functional study of NO interaction with reduced ceria: identification of \({{\rm{N}}}_{3}^{-}\) and NO2− as new intermediates in NO conversion. Appl. Catal. B: Environ. 176, 107–119 (2015).

    Article  Google Scholar 

  24. Mihaylov, M. Y., Ivanova, E. Z., Vayssilov, G. N. & Hadjiivanov, K. I. Revisiting ceria-NOx interaction: FTIR studies. Catal. Today 357, 613–620 (2020).

    Article  CAS  Google Scholar 

  25. Kašpar, J., de Leitenburg, C., Fornasiero, P., Trovarelli, A. & Graziani, M. NO reduction by CO over Rh/Al2O3. Effects of rhodium dispersion on the catalytic properties. J. Catal. 146, 136–143 (1994).

    Article  Google Scholar 

  26. Malecka, M. & Kepinski, L. \({{\rm{Ce}}}_{0.4}^{{\rm{III}}}{{\rm{Ce}}}_{0.6}^{{\rm{IV}}}{{\rm{AlO}}}_{3.3}\) – an unexpected product of a solid state reaction in the CeO2–Al2O3 system. CrystEngComm 17, 8282–8288 (2015).

    Article  CAS  Google Scholar 

  27. Skála, T., Tsud, N., Prince, K. C. & Matolín, V. Formation of alumina–ceria mixed oxide in model systems. Appl. Surf. Sci. 257, 3682–3687 (2011).

    Article  ADS  Google Scholar 

  28. Song, I. et al. Understanding reactivity and stability of rhodium supported on different ceria facets in catalytic NO reduction and CO/hydrocarbon oxidation reactions. Preprint at https://doi.org/10.26434/chemrxiv-2023-9ldvr-v2 (2024).

  29. Schmieg, S. J. & Belton, D. N. Effect of hydrothermal aging on oxygen storage/release and activity in a commercial automotive catalyst. Appl. Catal. B: Environ. 6, 127–144 (1995).

    Article  CAS  Google Scholar 

  30. Sayle, D. C. et al. Aging mechanisms of nanoceria and pathways for preserving optimum morphology. Nano Today 51, 101916 (2023).

    Article  CAS  Google Scholar 

  31. Fu, W. T. & Ijdo, D. J. W. The structure of CeAlO3 by Rietveld refinement of X-ray powder diffraction data. J. Solid State Chem. 177, 2973–2976 (2004).

    Article  CAS  ADS  Google Scholar 

  32. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  ADS  Google Scholar 

  33. Perdew, J. P. et al. Erratum: Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 48, 4978 (1993).

    Article  CAS  ADS  Google Scholar 

  34. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  ADS  Google Scholar 

  35. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  ADS  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  ADS  Google Scholar 

  38. Migani, A., Vayssilov, G. N., Bromley, S. T., Illas, F. & Neyman, K. M. Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. J. Mater. Chem. 20, 10535–10546 (2010).

    Article  CAS  Google Scholar 

  39. Vayssilov, G. N., Mihaylov, M., St. Petkov, P., Hadjiivanov, K. I. & Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 115, 23435–23454 (2011).

    Article  CAS  Google Scholar 

  40. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  ADS  Google Scholar 

  41. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  42. Digne, M., Sautet, P., Raybaud, P., Euzen, P. & Toulhoat, H. Use of DFT to achieve a rational understanding of acid–basic properties of γ-alumina surfaces. J. Catal. 226, 54–68 (2004).

    Article  CAS  Google Scholar 

  43. Pueyo Bellafont, N., Viñes, F., Hieringer, W. & Illas, F. Predicting core level binding energies shifts: suitability of the projector augmented wave approach as implemented in VASP. J. Comput. Chem. 38, 518–522 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Aleksandrov, H. Dataset for the article “Transforming ceria into 2-dimensional clusters enhances catalytic activity”. Zenodo https://doi.org/10.5281/zenodo.14030546 (2024).

Download references

Acknowledgements

Y.W., A.D., and H.P. acknowledge the financial support by the U.S. Department of Energy’s Basic Energy Sciences (DOE/BES) Catalysis Science programme, grant DE-FG02-05ER15712. K.K., J.S., L.K., M.B., D.J., and W.H. were supported by the U.S. Department of Energy’s Basic Energy Sciences (DOE/BES), Division of Chemical Sciences, Geosciences, and Biosciences within the Catalysis Science programme (DE-AC05-RL01830, FWP-47319). K.K., M.H.E., X.S.L, J.T., and I.S. acknowledge the financial support by the U.S. Department of Energy, Energy Efficiency and Renewable Energy, Vehicle Technology Office. PNNL is a multi-programme national laboratory operated for the DOE by Battelle Memorial Institute under contract DE-AC06-76RL01830. The 14.1-T NMR spectrometer was acquired with support from the BES Chemical Sciences, Geosciences, & Biosciences (CSGB) Division. D.P.D., C.J.B. and J.T.M. were supported in part by the National Science Foundation under Cooperative Agreement No. EEC-1647722. Use of the Advanced Photon Source was supported by the U.S. Department of Energy Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357. MRCAT operations, beamlines 10-BM and 10-ID, are supported by the Department of Energy and the MRCAT member institutions. H.A.A. and I.Z.K. are grateful to the European Union’s NextGenerationEU, through the National Recovery and Resilience Plan of the Republic of Bulgaria, project no. BG-RRP-2.004-0008, for the financial support. Computational resources at the Nestum computational facility of Sofia Tech Park (Bulgaria) have been used. The authors thank COST Action CA18234 for stimulating this study.

Author information

Authors and Affiliations

Authors

Contributions

K.K. designed the research and carried out most of the catalytic tests, syntheses, infrared characterization measurements, data analysis and drafted the manuscript; K.K., H.A.A., J.S., A.D. and Y.W. supervised the project; K.K., H.A.A., J.S., A.D. and Y.W. revised the manuscript; Y.S., P.T. and X.W. supplied the commercial supports; L.K., H.P. and A.D. performed microscopy measurements; M.H.E. performed XPS; T.R.G. performed NMR spectroscopy; I.Z.K., G.N.V. and H.A.A. performed the DFT calculations; M.B. performed XRD measurements and Rietveld refinement; D.P.D., C.J.B. and J.T.M. performed XAS and analysed the XAS data; K.K., Y.W., D.J., J.S. and A.D. discussed the H2 treatment experiments; I.S., J.T. and W.H. contributed to synthesis efforts; X.S.L. performed BET surface-area measurements; all of the authors contributed to the discussion of the results and commented on the manuscript.

Corresponding authors

Correspondence to Konstantin Khivantsev, Hristiyan A. Aleksandrov, János Szanyi, Abhaya Datye or Yong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Frédéric Meunier, Martin Votsmeier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 HAADF-STEM microscopy.

af, HAADF-STEM images of 0.1 wt% Rh/CeAl08 sample (imaged after last reactive treatment 8 as specified in Fig. 4a). The images corroborate the formation of approximately one-monolayer-thin CexOy patches on the surface of alumina. Scale bars, 5 nm.

Extended Data Fig. 2 HAADF-STEM microscopy.

ad, High-magnification HAADF-STEM image of ceria–zirconia/alumina sample after 1,000 °C reactive treatment 4 in Supplementary Fig. 6. The alumina surfaces are covered with a dense layer of ultrasmall ceria–zirconia clusters (they are ceria–zirconia clusters as evidenced by EDS maps) after reactive treatment.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khivantsev, K., Pham, H., Engelhard, M.H. et al. Transforming ceria into 2D clusters enhances catalytic activity. Nature 640, 947–953 (2025). https://doi.org/10.1038/s41586-025-08684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08684-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing