Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A robustly rooted tree of eukaryotes reveals their excavate ancestry

Abstract

The eukaryote Tree of Life (eToL) depicts the relationships among all eukaryotic organisms; its root represents the Last Eukaryotic Common Ancestor (LECA) from which all extant complex lifeforms are descended1. Locating this root is crucial for reconstructing the features of LECA, both as the endpoint of eukaryogenesis and the start point for the evolution of the myriad complex traits underpinning the diversification of living eukaryotes. However, the position of the root remains contentious due to pervasive phylogenetic artefacts stemming from inadequate evolutionary models, poor taxon sampling and limited phylogenetic signal1. Here we estimate the root of the eToL with unprecedented resolution on the basis of a new, much larger, dataset of mitochondrial proteins that includes all known eukaryotic supergroups. Our analyses of a 100 taxon × 93 protein dataset with state-of-the-art phylogenetic models and an extensive evaluation of alternative hypotheses show that the eukaryotic root lies between two multi-supergroup assemblages: ‘Opimoda+’ and ‘Diphoda+’. This position is consistently supported across different models and robustness analyses. Notably, groups containing ‘typical excavates’ are placed on both sides of the root, suggesting the complex features of the ‘excavate’ cell architecture trace back to LECA. This study sheds light on the ancestral cells from which extant eukaryotes arose and provides a crucial framework for investigating the origin and evolution of canonical eukaryotic features.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rooted phylogenies of eukaryotes estimated from mitochondrial proteins of alphaproteobacterial origin.
Fig. 2: Likelihood estimation of candidate eukaryote roots across complex models.
Fig. 3: Evaluating potential for LBA bias on simulated data.
Fig. 4: The recovered root suggests the morphological features of ‘typical excavates’ are ancestral traits of LECA.

Similar content being viewed by others

Data availability

All sequence alignments and phylogenetic trees are available at Figshare (https://figshare.com/s/59b28ecc0056dc8d0d03)34 and the accession codes for publicly available data used in these analyses are given in Supplementary Table 7. The data included in the accession codes can be found in the National Center for Biotechnology Information (NCBI, http://www.ncbi.nlm.nih.gov), the MMETSP database on the iMicrobe website https://www.imicrobe.us/#/projects/104 or the PhyloFisher v.1 dataset available at Figshare (https://doi.org/10.6084/m9.figshare.15141900.v1)72 as indicated in Supplementary Table 7.

Code availability

Custom scripts have been deposited at Figshare (https://figshare.com/s/59b28ecc0056dc8d0d03)34.

References

  1. Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. The new tree of eukaryotes. Trends Ecol. Evol. 35, 43–55 https://doi.org/10.1016/j.tree.2019.08.008 (2020).

  2. Tikhonenkov, D. V. et al. Microbial predators form a new supergroup of eukaryotes. Nature 612, 714–719 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12, 1879 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Katz, L. A., Grant, J. R., Parfrey, L. W. & Burleigh, J. G. Turning the crown upside down: gene tree parsimony roots the eukaryotic tree of life. Syst. Biol. 61, 653–660 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cerón-Romero, M. A., Fonseca, M. M., De Oliveira Martins, L., Posada, D. & Katz, L. A. Phylogenomic analyses of 2,786 genes in 158 lineages support a root of the eukaryotic tree of life between Opisthokonts and all other lineages. Genome Biol. Evol. 14, evac119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cavalier-Smith, T. Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree. Biol. Lett. 6, 342–345 (2010).

    Article  PubMed  Google Scholar 

  9. Stechmann, A. & Cavalier-Smith, T. Rooting the eukaryote tree by using a derived gene fusion. Science 297, 89–91 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Richards, T. A. & Cavalier-Smith, T. Myosin domain evolution and the primary divergence of eukaryotes. Nature 436, 1113–1118 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Rogozin, I. B., Basu, M. K., Csürös, M. & Koonin, E. V. Analysis of rare genomic changes does not support the Unikont–Bikont phylogeny and suggests cyanobacterial symbiosis as the point of primary radiation of eukaryotes. Genome Biol. Evol. 1, 99–113 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Leonard, G. & Richards, T. A. Genome-scale comparative analysis of gene fusions, genefissions, and the fungal tree of life. Proc. Natl Acad. Sci. USA 109, 21402–21407 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vosseberg, J. et al. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat. Ecol. Evol. 5, 92–100 (2021).

    Article  PubMed  Google Scholar 

  14. Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

  17. Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evolution 6, 253–262 (2022).

    Article  Google Scholar 

  18. Al Jewari, C. & Baldauf, S. L. An excavate root for the eukaryote Tree of Life. Sci. Adv. 9, eade4973 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Derelle, R. & Lang, B. F. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. Mol. Biol. Evol. 29, 1277–1289 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Derelle, R. et al. Bacterial proteins pinpoint a single eukaryotic root. Proc. Natl Acad. Sci. USA 112, E693–E699 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He, D., Fiz-Palacios, O., Fu, C. J., Tsai, C. C. & Baldauf, S. L. An alternative root for the eukaryote Tree of Life. Curr. Biol. 24, 465–470 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Al Jewari, C. & Baldauf, S. L. Conflict over the eukaryote root resides in strong outliers, mosaics and missing data sensitivity of site-specific (CAT) mixture models. Syst. Biol. 0, 1–16 (2022).

    Google Scholar 

  23. Lax, G. et al. Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes. Nature 564, 410–414 (2018).

  24. Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Susko, E., Lincker, L. & Roger, A. J. Accelerated estimation of frequency classes in site-heterogeneous profile mixture models. Mol. Biol. Evol. 35, 1266–1283 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Crotty, S. M. et al. GHOST: recovering historical signal from heterotachously evolved sequence alignments. Syst. Biol. 69, 249–264 (2019).

    Google Scholar 

  27. Gaston, D., Susko, E. & Roger, A. J. A phylogenetic mixture model for the identification of functionally divergent protein residues. Bioinformatics 27, 2655–2663 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Quang, L. S., Gascuel, O. & Lartillot, N. Empirical profile mixture models for phylogenetic reconstruction. Bioinformatics 24, 2317–2323 (2008).

    Article  CAS  PubMed  Google Scholar 

  29. Szánthó, L. L., Lartillot, N., Szöllősi, G. J. & Schrempf, D. Compositionally constrained sites drive long-branch attraction. Syst. Biol. https://doi.org/10.1093/SYSBIO/SYAD013 (2023).

  30. Jerlström-Hultqvist, J. et al. A unique symbiosome in an anaerobic single-celled eukaryote. Nat. Commun. 15, 9726 (2024).

  31. Baños, H., Susko, E. & Roger, A. J. Is over-parameterization a problem for profile mixture models? Syst. Biol. https://doi.org/10.1093/SYSBIO/SYAD063 (2023).

  32. Brown, M. W. et al. Phylogenomics places orphan protistan lineages in a novel eukaryotic super-group. Genome Biol. Evol. 10, 427–433 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Strassert, J. F. H., Jamy, M., Mylnikov, A. P., Tikhonenkov, D. V. & Burki, F. New phylogenomic analysis of the enigmatic phylum Telonemia further resolves the eukaryote Tree of Life. Mol. Biol. Evol. 36, 757 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Williamson, K. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry [Data]. Figshare https://doi.org/10.6084/m9.figshare.26863594.v1 (2025).

  35. Cavalier-Smith, T. Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi. Protoplasma 259, 487–593 (2022).

    Article  CAS  PubMed  Google Scholar 

  36. Cavalier-Smith, T. & Chao, E. E. Y. Multidomain ribosomal protein trees and the planctobacterial origin of neomura (eukaryotes, archaebacteria). Protoplasma 257, 621–753 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Baker, B. A. et al. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments. Nat. Microbiol. 9, 964–975 (2024).

  38. Susko, E. Tests for two trees using likelihood methods. Mol. Biol. Evol. 31, 1029–1039 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Markowski, E. & Susko, E. Performance of topology tests under extreme selection bias. Mol. Biol. Evol. 41, msad280 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Heiss, A. A. et al. Combined morphological and phylogenomic re-examination of malawimonads, a critical taxon for inferring the evolutionary history of eukaryotes. R. Soc. Open Sci. 5, 171707 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  41. Susko, E. & Roger, A. J. Long branch attraction biases in phylogenetics. Syst. Biol. 70, 838–843 (2021).

    Article  PubMed  Google Scholar 

  42. Kapli, P. & Telford, M. J. Topology-dependent asymmetry in systematic errors affects phylogenetic placement of Ctenophora and Xenacoelomorpha. Sci. Adv. 6, 5162–5173 (2020).

    Article  ADS  Google Scholar 

  43. Inagaki, Y., Susko, E., Fast, N. M. & Roger, A. J. Covarion shifts cause a long-branch attraction artifact that unites Microsporidia and Archaebacteria in EF-1α phylogenies. Mol. Biol. Evol. 21, 1340–1349 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Eglit, Y. et al. Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora. Curr. Biol. 34, 451–459.e6 (2024).

    Article  CAS  PubMed  Google Scholar 

  45. Yubuki, N. & Leander, B. S. Evolution of microtubule organizing centers across the tree of eukaryotes. Plant J. 75, 230–244 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Heiss, A. A., Walker, G. & Simpson, A. G. B. The microtubular cytoskeleton of the apusomonad Thecamonas, a sister lineage to the opisthokonts. Protist 164, 598–621 (2013).

    Article  PubMed  Google Scholar 

  47. Suzuki-Tellier, S., Kiørboe, T. & Simpson, A. G. B. The function of the feeding groove of ‘typical excavate’ flagellates. J. Eukaryot. Microbiol. 71, e13016 (2024).

    Article  PubMed  Google Scholar 

  48. Takishita, K. et al. Multigene phylogenies of diverse carpediemonas-like organisms identify the closest relatives of ‘amitochondriate’ diplomonads and retortamonads. Protist 163, 344–355 (2012).

    Article  PubMed  Google Scholar 

  49. Leger, M. M. et al. Organelles that illuminate the origins of Trichomonas hydrogenosomes and Giardia mitosomes. Nat. Ecol. Evol. 1, 0092 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Heiss, A. A., Walker, G. & Simpson, A. G. B. The ultrastructure of ancyromonas, a eukaryote without supergroup affinities. Protist 162, 373–393 (2011).

    Article  PubMed  Google Scholar 

  51. Brugerolle, G. Description of a new freshwater heterotrophic flagellate Sulcomonas lacustris affiliated to the collodictyonids. Acta Protozool. 45, 175–182 (2006).

    Google Scholar 

  52. Brugerolle, G., Bricheux, G., Philippe, H. & Coffe, G. Collodictyon triciliatum and Diphylleia rotans (=Aulacomonas submarina) form a new family of flagellates (Collodictyonidae) with tubular mitochondrial cristae that is phylogenetically distant from other flagellate groups. Protist 153, 59–70 (2002).

    Article  PubMed  Google Scholar 

  53. Tikhonenkov, D. V. et al. Description of Colponema vietnamica sp.n. and Acavomonas peruviana n. gen. n. sp., two new alveolate Phyla (Colponemidia nom. nov. and Acavomonidia nom. nov.) and their contributions to reconstructing the ancestral state of alveolates and eukaryotes. PLoS ONE 9, e95467 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  54. Janouškovec, J. et al. A new lineage of eukaryotes illuminates early mitochondrial genome reduction. Curr. Biol. 27, 3717–3724.e5 (2017).

    Article  PubMed  Google Scholar 

  55. Leander, B. S. Eukaryotic evolution: deep phylogeny does not imply morphological novelty. Curr. Biol. 33, R112–R114 (2023).

    Article  CAS  PubMed  Google Scholar 

  56. Cavalier-Smith, T. Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur. J. Protistol. 49, 115–178 (2013).

    Article  PubMed  Google Scholar 

  57. Tice, A. K. et al. PhyloFisher: a phylogenomic package for resolving eukaryotic relationships. PLoS Biol. 19, e3001365 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Criscuolo, A. & Gribaldo, S. BMGE (block mapping and gathering with entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).

    Article  CAS  PubMed  Google Scholar 

  65. Tukey, J. W. Exploratory Data Analysis (Addison-Wesley Publishing Company, 1977).

  66. Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268 (2015).

    Article  CAS  PubMed  Google Scholar 

  67. Menardo, F. et al. Treemmer: a tool to reduce large phylogenetic datasets with minimal loss of diversity. BMC Bioinf. 19, 164 (2018).

    Article  Google Scholar 

  68. Susko, E. & Roger, A. J. On the use of information criteria for model selection in phylogenetics. Mol. Biol. Evol. 37, 549–562 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Lartillot, N., Lepage, T. & Blanquart, S. PhyloBayes 3: a Bayesian software package for phylogenetic reconstruction and molecular dating. Bioinformatics 25, 2286–2288 (2009).

    Article  CAS  PubMed  Google Scholar 

  70. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).

    Article  CAS  PubMed  Google Scholar 

  71. Reynolds, D. in Encyclopedia of Biometrics (ed. Li, S. Z.) 659–663 (Springer, 2009).

  72. Brown, M. Data associated with PhyloFisher. Figshare https://doi.org/10.6084/m9.figshare.15141900.v1 (2021).

Download references

Acknowledgements

We thank N. Ly-Trong for assistance with model implementation in IQ-TREE and J. Jerlström-Hultqvist for assistance with data acquisition and processing. We also thank J. Ross for assistance with figure design. This work was supported by the Moore-Simons Project on the Origin of the Eukaryotic Cell, Simons Foundation grant no. 735923LPI (https://doi.org/10.46714/735923LPI) awarded to A.J.R., E.S. and L.E. and by NSERC Discovery grants awarded to A.J.R. (grant no. RGPIN-2022-05430), A.G.B.S. (grant no. 298366-2019) and E.S. K.W. was supported by a graduate scholarship from the Killam Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Ancestral sequence reconstruction analyses, expansion and curation of the final datasets, and all phylogenomic analyses were performed by K.W. in consultation with A.J.R., A.G.B.S. and L.E. K.W. and H.B. performed simulation analyses. H.B. developed and implemented the MEOW model and performed cross-validation testing. C.G.P.M. and E.S. performed GFmix analyses. E.S. performed topology testing. B.Q.M. implemented the FunDi model in IQ-TREE2. S.A.M.-G., R.K. and R.J.S.O. provided molecular data. K.W., A.J.R., A.G.B.S., H.B., C.G.P.M. and E.S. wrote, and all authors edited and approved, the manuscript. A.J.R. and L.E. initially conceived the study.

Corresponding authors

Correspondence to Kelsey Williamson or Andrew J. Roger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Thomas Richards and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Entropy and posterior probability of the predicted ancestral sequence at the root of Alphaproteobacteria as ingroup taxa are removed.

A. The mean, median, and standard deviation of the posterior probability as taxa are removed. B. The mean, median, and standard deviation of the entropy as taxa are removed.

Extended Data Fig. 2 Bayesian consensus tree estimated from Anae+ dataset.

Consensus phylogeny estimated under the CAT + GTR model in PhyloBayes from 4 chains after 29,000 cycles, with a burn-in of 1000. Posterior probabilities for each bipartition are indicated. Note that these 4 chains included one in which Hemimastigophora branched on the opposite side of the root, separate from its previously inferred close relative Meteora, with this non-convergence resulting in posterior probabilities ~0.75 (0.74) for several deep nodes in the Diphoda+ side of the tree.

Extended Data Fig. 3 Phylogeny estimated from Anae+ dataset with CAT-PMSF model.

Amino acid exchangeability matrix and site frequency profiles were estimated on the alignment and a guide tree in PhyloBayes. Rate variation was modelled with the Free Rate model with four classes. Support values indicated are from 100 replicates of non-parametric bootstrapping.

Extended Data Fig. 4 Bayesian consensus tree estimated from Anae- dataset.

Consensus phylogeny estimated under the CAT + GTR model in PhyloBayes from 4 chains after 16,500 cycles, with a burn-in of 1000. Posterior probabilities for each bipartition are indicated.

Extended Data Fig. 5 Phylogeny estimated from Anae- dataset with CAT-PMSF model.

Amino acid exchangeability matrix and site frequency profiles were estimated on the alignment and a guide tree in PhyloBayes. Rate variation was modelled with the Free Rate model with four classes. Support values indicated are from 100 replicates of non-parametric bootstrapping.

Extended Data Fig. 6 Phylogeny estimated from Anae+ dataset with only nuclear-encoded proteins.

Phylogeny was estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are displayed on branches as SH-aLRT/UFBOOT2.

Extended Data Fig. 7 Phylogeny estimated from Anae- dataset with only nuclear-encoded proteins.

Phylogeny was estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are displayed on branches as SH-aLRT/UFBOOT2.

Extended Data Fig. 8 Evaluating change in support for the root position as fastest-evolving sites are removed.

A. Phylogenies were estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are indicated for the bipartitions relevant to the position of the eukaryote root.

Extended Data Fig. 9 Phylogeny estimated from Anae- dataset after removal of fastest evolving taxa.

Phylogeny was estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are displayed on branches as SH-aLRT/UFBOOT2.

Extended Data Fig. 10 Phylogeny estimated from Anae- dataset after removal of most divergent genes.

Alignment after gene removal consisted of 19324 sites from 80 concatenated genes. The phylogeny was estimated in IQ-TREE2 under the LG + MEOW80 + G4 model with 1000 replicates each of SH-aLRT and UFBOOT2. Support values are displayed on branches as SH-aLRT/UFBOOT2.

Supplementary information

Supplementary Information

This file contains Supplementary Methods and Refs.

Reporting Summary

Supplementary Tables

This file contains Supplementary Tables 1–11.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Williamson, K., Eme, L., Baños, H. et al. A robustly rooted tree of eukaryotes reveals their excavate ancestry. Nature 640, 974–981 (2025). https://doi.org/10.1038/s41586-025-08709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08709-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing