Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Matters Arising
  • Published:

Experiments implementing small commuting models lack gravitational features

Matters Arising to this article was published on 23 July 2025

The Original Article was published on 30 November 2022

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lack of thermalization in model 1.
Fig. 2: Inconsistencies in the teleportation signal of model 1 beyond training data.
Fig. 3: Absence of perfect size winding in non-commuting extensions of model 1.

References

  1. Hooft, G. Dimensional reduction in quantum gravity. Preprint at https://arxiv.org/abs/gr-qc/9310026 (1993).

  2. Susskind, L. The world as a hologram. J. Math. Phys. 36, 6377–6396 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  3. Maldacena, J. The large-n limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113–1133 (1999).

    Article  MathSciNet  Google Scholar 

  4. Jafferis, D. et al. Traversable wormhole dynamics on a quantum processor. Nature 612, 51–55 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Gao, P., Jafferis, D. L. & Wall, A. C. Traversable wormholes via a double trace deformation. J. High Energy Phys. 2017, 1–25 (2017).

    Article  MathSciNet  Google Scholar 

  6. Maldacena, J., Stanford, D. & Yang, Z. Diving into traversable wormholes. Fortschr. Phys. 65, 1700034 (2017).

    Article  MathSciNet  Google Scholar 

  7. Gao, P. & Jafferis, D. L. A traversable wormhole teleportation protocol in the SYK model. J. High Energy Phys. 2021, 97 (2021).

    Article  MathSciNet  Google Scholar 

  8. Brown, A. R. et al. Quantum gravity in the lab. I. Teleportation by size and traversable wormholes. PRX Quant. 4, 010320 (2023).

  9. Nezami, S. et al. Quantum gravity in the lab. II. Teleportation by size and traversable wormholes. PRX Quant. 4, 010321 (2023).

  10. Schuster, T. et al. Many-body quantum teleportation via operator spreading in the traversable wormhole protocol. Phys. Rev. X 12, 031013 (2022).

    CAS  Google Scholar 

  11. Sachdev, S. & Ye, J. Gapless spin-fluid ground state in a random quantum Heisenberg magnet. Phys. Rev. Lett. 70, 3339–3342 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Kitaev, A. A simple model of quantum holography. Kavli Institute of Theoretical Physics, University of California, Santa Barbara http://online.kitp.ucsb.edu/online/entangled15/kitaev/ (7 April 2015) and http://online.kitp.ucsb.edu/online/entangled15/kitaev2/ (27 May 2015).

  13. Hawking, S. W. Particle creation by black holes. Commun. Math. Phys. 43, 199–220 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  14. Horowitz, G. T. & Hubeny, V. E. Quasinormal modes of AdS black holes and the approach to thermal equilibrium. Phys. Rev. D 62, 024027 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  15. Kubo, R. Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn 12, 570–586 (1957).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We acknowledge discussions with D. Stanford. This work was supported by the US Department of Energy via the GeoFlow consortium (QuantISED Award DE-SC0019380). T.S. also acknowledges support from the Walter Burke Institute for Theoretical Physics at Caltech. N.Y.Y. also acknowledges support from a Simons Investigator award.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed extensively to all aspects of this paper.

Corresponding authors

Correspondence to Bryce Kobrin, Thomas Schuster or Norman Y. Yao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobrin, B., Schuster, T. & Yao, N.Y. Experiments implementing small commuting models lack gravitational features. Nature 643, E17–E19 (2025). https://doi.org/10.1038/s41586-025-08939-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08939-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing