Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quasar radiation transforms the gas in a merging companion galaxy

Abstract

Quasars, powered by gas accretion onto supermassive black holes1,2, rank among the most energetic objects in the Universe3,4. Although they are thought to be ignited by galaxy mergers5,6,7,8,9,10,11 and affect the surrounding gas12,13,14,15, observational constraints on both processes remain scarce16,17,18. Here we describe a major merging system at redshift z ≈ 2.7 and demonstrate that radiation from the quasar in one galaxy directly alters the gas properties in the other galaxy. Our findings reveal that the galaxies, with centroids separated by only a few kiloparsecs and approaching each other at a speed of approximately 550 km s−1, are massive, are forming stars and contain a substantial molecular mass. Yet, dusty molecular gas seen in absorption against the quasar nucleus is highly excited and confined within cloudlets with densities of approximately 105 to 106 cm−3 and sizes of less than 0.02 pc, several orders of magnitude more compact than those observed in intervening (non-quasar) environments. This is also approximately 105 times smaller than currently resolvable through molecular-line emission at high redshifts. We infer that, wherever it is exposed to the quasar radiation, the molecular gas is disrupted, leaving behind surviving dense clouds too small to give birth to new stars. Our results not only underscore the role of major galaxy mergers in triggering quasar activity but also reveal localized negative feedback as a profound alteration of the internal gas structure, which probably hampers star formation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Optical and millimetre observations of the quasar-host and companion-galaxy system.
Fig. 2: Absorption lines in the spectrum of the quasar J012555.11−012925.00.
Fig. 3: Spectral energy distribution of the companion galaxy and quasar host galaxy.
Fig. 4: H2 excitation diagram and physical conditions in H2-bearing medium.

Similar content being viewed by others

Data availability

The Subaru imaging data are available from the HSC Legacy Archive (https://hscla.mtk.nao.ac.jp/). VLT spectroscopic data were collected at the European Southern Observatory under ESO programme 105.203L (principal investigator P.N.) and are publicly available through the ESO science archive at https://archive.eso.org/cms.html. ALMA data collected under programme ID 2022.1.01792.S (principal investigator S.L.) are publicly available from the ALMA science archive (https://almascience.eso.org/aq/).

Code availability

The following software was used: Astropy86, Bagpipes48, Galfit43, Matplotlib87, NumPy88, Photutils89, SciPy90, SOFIA46,47, Emcee45, spectro (https://github.com/balashev/spectro) and Meudon PDR (https://pdr.obspm.fr/). Requests for materials should be addressed to S.B.

References

  1. Antonucci, R. Unified models for active galactic nuclei and quasars. Annu. Rev. Astron. Astrophys. 31, 473–521 (1993).

    Article  ADS  CAS  Google Scholar 

  2. Netzer, H. Revisiting the unified model of active galactic nuclei. Annu. Rev. Astron. Astrophys. 53, 365–408 (2015).

    Article  ADS  CAS  Google Scholar 

  3. Wu, X.-B. et al. An ultraluminous quasar with a twelve-billion-solar-mass black hole at redshift 6.30. Nature 518, 512–515 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Wolf, C. et al. The accretion of a solar mass per day by a 17-billion solar mass black hole. Nat. Astron. 8, 520–529 (2024).

    Article  ADS  Google Scholar 

  5. Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003).

    Article  ADS  Google Scholar 

  6. Hopkins, P. F., Hernquist, L., Cox, T. J. & Kereš, D. A cosmological framework for the co-evolution of quasars, supermassive black holes, and elliptical galaxies. I. Galaxy mergers and quasar activity. Astrophys. J. Suppl. Ser. 175, 356–389 (2008).

    Article  ADS  Google Scholar 

  7. Ellison, S. L., Patton, D. R., Mendel, J. T. & Scudder, J. M. Galaxy pairs in the Sloan Digital Sky Survey. IV. Interactions trigger active galactic nuclei. Mon. Not. R. Astron. Soc. 418, 2043–2053 (2011).

    Article  ADS  CAS  Google Scholar 

  8. Trakhtenbrot, B. et al. ALMA observations show major mergers among the host galaxies of fast-growing, high-redshift supermassive black holes. Astrophys. J. 836, 8 (2017).

    Article  ADS  Google Scholar 

  9. Decarli, R. et al. Rapidly star-forming galaxies adjacent to quasars at redshifts exceeding 6. Nature 545, 457–461 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goulding, A. D. et al. Galaxy interactions trigger rapid black hole growth: an unprecedented view from the Hyper Suprime-Cam survey. Publ. Astron. Soc. Jpn 70, S37 (2018).

    Article  Google Scholar 

  11. Fogasy, J., Knudsen, K. K., Drouart, G., Lagos, C. D. P. & Fan, L. SMM J04135+10277: a distant QSO-starburst system caught by ALMA. Mon. Not. R. Astron. Soc. 493, 3744–3756 (2020).

    Article  ADS  CAS  Google Scholar 

  12. Hopkins, P. F. & Elvis, M. Quasar feedback: more bang for your buck. Mon. Not. R. Astron. Soc. 401, 7–14 (2010).

    Article  ADS  Google Scholar 

  13. Dubois, Y. et al. The HORIZON-AGN simulation: morphological diversity of galaxies promoted by AGN feedback. Mon. Not. R. Astron. Soc. 463, 3948–3964 (2016).

    Article  ADS  CAS  Google Scholar 

  14. Pontzen, A. et al. How to quench a galaxy. Mon. Not. R. Astron. Soc. 465, 547–558 (2017).

    Article  ADS  CAS  Google Scholar 

  15. Moiseev, A. V. & Smirnova, A. A. Ionizing spotlight of active galactic nucleus. Galaxies 11, 118 (2023).

    Article  ADS  Google Scholar 

  16. Fabian, A. C. Observational evidence of active galactic nuclei feedback. Annu. Rev. Astron. Astrophys. 50, 455–489 (2012).

    Article  ADS  CAS  Google Scholar 

  17. Hirschmann, M., Somerville, R. S., Naab, T. & Burkert, A. Origin of the antihierarchical growth of black holes. Mon. Not. R. Astron. Soc. 426, 237–257 (2012).

    Article  ADS  Google Scholar 

  18. Tang, S. et al. Morphological asymmetries of quasar host galaxies with Subaru Hyper Suprime-Cam. Mon. Not. R. Astron. Soc. 521, 5272–5297 (2023).

    Article  ADS  CAS  Google Scholar 

  19. Noterdaeme, P. et al. Proximate molecular quasar absorbers. Excess of damped H2 systems at zabs ≈ zQSO in SDSS DR14. Astron. Astrophys. 627, A32 (2019).

    Article  CAS  Google Scholar 

  20. Popesso, P. et al. The main sequence of star-forming galaxies across cosmic times. Mon. Not. R. Astron. Soc. 519, 1526–1544 (2023).

    Article  ADS  CAS  Google Scholar 

  21. Rahmati, A. & Schaye, J. Predictions for the relation between strong Hi absorbers and galaxies at redshift 3. Mon. Not. R. Astron. Soc. 438, 529–547 (2014).

    Article  ADS  CAS  Google Scholar 

  22. Noterdaeme, P. et al. A connection between extremely strong damped Lyman-α systems and Lyman-α emitting galaxies at small impact parameters. Astron. Astrophys. 566, A24 (2014).

    Article  Google Scholar 

  23. Krogager, J. K., Møller, P., Fynbo, J. P. U. & Noterdaeme, P. Consensus report on 25 yr of searches for damped Ly α galaxies in emission: confirming their metallicity-luminosity relation at z 2. Mon. Not. R. Astron. Soc. 469, 2959–2981 (2017).

    Article  ADS  CAS  Google Scholar 

  24. Krogager, J.-K. et al. High-redshift damped Ly α absorbing galaxy model reproducing the NH iZ distribution. Mon. Not. R. Astron. Soc. 495, 3014–3021 (2020).

    Article  ADS  CAS  Google Scholar 

  25. Di Matteo, T., Croft, R. A. C., Springel, V. & Hernquist, L. The cosmological evolution of metal enrichment in quasar host galaxies. Astrophys. J. 610, 80–92 (2004).

    Article  ADS  Google Scholar 

  26. Ledoux, C., Petitjean, P., Fynbo, J. P. U., Møller, P. & Srianand, R. Velocity-metallicity correlation for high-z DLA galaxies: evidence of a mass-metallicity relation? Astron. Astrophys. 457, 71–78 (2006).

    Article  ADS  CAS  Google Scholar 

  27. Balashev, S. A. et al. CO-dark molecular gas at high redshift: very large H2 content and high pressure in a low-metallicity damped Lyman alpha system. Mon. Not. R. Astron. Soc. 470, 2890–2910 (2017).

    Article  ADS  CAS  Google Scholar 

  28. Ranjan, A. et al. Molecular gas and star formation in an absorption-selected galaxy: hitting the bull’s eye at z  2.46. Astron. Astrophys. 618, A184 (2018).

    Article  Google Scholar 

  29. Balashev, S. A. et al. X-shooter observations of strong H2-bearing DLAs at high redshift. Mon. Not. R. Astron. Soc. 490, 2668–2678 (2019).

    Article  ADS  CAS  Google Scholar 

  30. Shull, J. M., Danforth, C. W. & Anderson, K. L. A far ultraviolet spectroscopic explorer survey of interstellar molecular hydrogen in the Galactic disk. Astrophys. J. 911, 55 (2021).

    Article  ADS  CAS  Google Scholar 

  31. Boissé, P. et al. A far UV study of interstellar gas towards HD 34078: high excitation H2 and small scale structure. Astron. Astrophys. 429, 509–523 (2005).

    Article  ADS  Google Scholar 

  32. Urrutia, T., Lacy, M. & Becker, R. H. Evidence for quasar activity triggered by galaxy mergers in HST observations of dust-reddened quasars. Astrophys. J. 674, 80–96 (2008).

    Article  ADS  CAS  Google Scholar 

  33. Glikman, E. et al. Major mergers host the most-luminous red quasars at z ~ 2: a Hubble Space Telescope WFC3/IR study. Astrophys. J. 806, 218 (2015).

    Article  ADS  Google Scholar 

  34. Hennebelle, P. & Falgarone, E. Turbulent molecular clouds. Astron. Astrophys. Rev. 20, 55 (2012).

    Article  ADS  Google Scholar 

  35. McCourt, M., Oh, S. P., O’Leary, R. & Madigan, A.-M. A characteristic scale for cold gas. Mon. Not. R. Astron. Soc. 473, 5407–5431 (2018).

    Article  ADS  CAS  Google Scholar 

  36. Arav, N., Barlow, T. A., Laor, A. & Blandford, R. D. Keck high-resolution spectroscopy of MRK 335: constraints on the number of emitting clouds in the broad-line region. Mon. Not. R. Astron. Soc. 288, 1015–1021 (1997).

    Article  ADS  CAS  Google Scholar 

  37. Balashev, S. A. & Noterdaeme, P. Molecular hydrogen in absorption at high redshifts. Exp. Astron. 55, 223–239 (2023).

    Article  ADS  Google Scholar 

  38. Kosenko, D. N., Balashev, S. A. & Klimenko, V. V. Cold diffuse interstellar medium of Magellanic Clouds. II. Physical conditions from excitation of C i and H2. Mon. Not. R. Astron. Soc. 528, 5065–5079 (2024).

    Article  ADS  CAS  Google Scholar 

  39. Oke, J. B. & Gunn, J. E. Secondary standard stars for absolute spectrophotometry. Astrophys. J. 266, 713–717 (1983).

    Article  ADS  CAS  Google Scholar 

  40. Noterdaeme, P. et al. Proximate molecular quasar absorbers. Chemical enrichment and kinematics of the neutral gas. Astron. Astrophys. 673, A89 (2023).

    Article  CAS  Google Scholar 

  41. Hunter, T. R. et al. The ALMA interferometric pipeline heuristics. Publ. Astron. Soc. Pac. 135, 074501 (2023).

    Article  ADS  Google Scholar 

  42. Tanaka, M. et al. Hyper Suprime-Cam legacy archive. Publ. Astron. Soc. Jpn 73, 735–746 (2021).

    Article  ADS  Google Scholar 

  43. Peng, C. Y., Ho, L. C., Impey, C. D. & Rix, H.-W. Detailed decomposition of galaxy images. II. Beyond axisymmetric models. Astron. J. 139, 2097–2129 (2010).

    Article  ADS  Google Scholar 

  44. Goodman, J. & Weare, J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 5, 65–80 (2010).

    Article  MathSciNet  Google Scholar 

  45. Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 125, 306–312 (2013).

    Article  ADS  Google Scholar 

  46. Serra, P. et al. SOFIA: a flexible source finder for 3D spectral line data. Mon. Not. R. Astron. Soc. 448, 1922–1929 (2015).

    Article  ADS  Google Scholar 

  47. Westmeier, T. et al. SOFIA 2 – an automated, parallel H i source finding pipeline for the WALLABY survey. Mon. Not. R. Astron. Soc. 506, 3962–3976 (2021).

    Article  ADS  CAS  Google Scholar 

  48. Carnall, A. C., McLure, R. J., Dunlop, J. S. & Davé, R. Inferring the star formation histories of massive quiescent galaxies with Bagpipes: evidence for multiple quenching mechanisms. Mon. Not. R. Astron. Soc. 480, 4379–4401 (2018).

    Article  ADS  CAS  Google Scholar 

  49. Carnall, A. C. et al. How to measure galaxy star formation histories. I. Parametric models. Astrophys. J. 873, 44 (2019).

    Article  ADS  CAS  Google Scholar 

  50. Calzetti, D. et al. The dust content and opacity of actively star-forming galaxies. Astrophys. J. 533, 682–695 (2000).

    Article  ADS  Google Scholar 

  51. Draine, B. T. & Li, A. Infrared emission from interstellar dust. IV. The silicate-graphite-PAH model in the post-Spitzer era. Astrophys. J. 657, 810–837 (2007).

    Article  ADS  CAS  Google Scholar 

  52. Solomon, P. M. & Vanden Bout, P. A. Molecular gas at high redshift. Annu. Rev. Astron. Astrophys. 43, 677–725 (2005).

    Article  ADS  CAS  Google Scholar 

  53. Boogaard, L. A. et al. The ALMA spectroscopic survey in the Hubble ultra deep field: CO excitation and atomic carbon in star-forming galaxies at z = 1–3. Astrophys. J. 902, 109 (2020).

    Article  ADS  CAS  Google Scholar 

  54. Carilli, C. L. & Walter, F. Cool gas in high-redshift galaxies. Annu. Rev. Astron. Astrophys. 51, 105–161 (2013).

    Article  ADS  CAS  Google Scholar 

  55. Bolatto, A. D., Wolfire, M. & Leroy, A. K. The CO-to-H2 conversion factor. Annu. Rev. Astron. Astrophys. 51, 207–268 (2013).

    Article  ADS  CAS  Google Scholar 

  56. Sargent, M. T. et al. Regularity underlying complexity: a redshift-independent description of the continuous variation of galaxy-scale molecular gas properties in the mass-star formation rate plane. Astrophys. J. 793, 19 (2014).

    Article  ADS  Google Scholar 

  57. Calistro Rivera, G. et al. Resolving the ISM at the peak of cosmic star formation with ALMA: the distribution of CO and dust continuum in z ~ 2.5 submillimeter galaxies. Astrophys. J. 863, 56 (2018).

    Article  ADS  Google Scholar 

  58. Vestergaard, M. & Peterson, B. M. Determining central black hole masses in distant active galaxies and quasars. II. Improved optical and UV scaling relationships. Astrophys. J. 641, 689–709 (2006).

    Article  ADS  CAS  Google Scholar 

  59. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    Article  ADS  CAS  Google Scholar 

  60. Zahid, H. J., Geller, M. J., Fabricant, D. G. & Hwang, H. S. The scaling of stellar mass and central stellar velocity dispersion for quiescent galaxies at z < 0.7. Astrophys. J. 832, 203 (2016).

    Article  ADS  Google Scholar 

  61. Runnoe, J. C., Brotherton, M. S. & Shang, Z. Updating quasar bolometric luminosity corrections. Mon. Not. R. Astron. Soc. 422, 478–493 (2012).

    Article  ADS  Google Scholar 

  62. Selsing, J., Fynbo, J. P. U., Christensen, L. & Krogager, J. K. An X-shooter composite of bright 1 < z < 2 quasars from UV to infrared. Astron. Astrophys. 585, A87 (2016).

    Article  ADS  Google Scholar 

  63. Wang, J., Hall, P. B., Ge, J., Li, A. & Schneider, D. P. Detections of the 2175 Å dust feature at 1.4 < z < 1.5 from the Sloan Digital Sky Survey. Astrophys. J. 609, 589–596 (2004).

    Article  ADS  CAS  Google Scholar 

  64. Srianand, R., Gupta, N., Petitjean, P., Noterdaeme, P. & Saikia, D. J. Detection of the 2175 Å extinction feature and 21-cm absorption in two Mg ii systems at z ~ 1.3. Mon. Not. R. Astron. Soc. 391, L69–L73 (2008).

    Article  ADS  Google Scholar 

  65. Zhang, S. et al. Seven broad absorption line quasars with excess broadband absorption near 2250 Å. Astrophys. J. 802, 92 (2015).

    Article  ADS  Google Scholar 

  66. Noterdaeme, P. et al. Discovery of a Perseus-like cloud in the early Universe. H i-to-H2 transition, carbon monoxide and small dust grains at zabs ≈ 2.53 towards the quasar J0000+0048. Astron. Astrophys. 597, A82 (2017).

    Article  Google Scholar 

  67. Gordon, K. D., Clayton, G. C., Misselt, K. A., Landolt, A. U. & Wolff, M. J. A quantitative comparison of the Small Magellanic Cloud, Large Magellanic Cloud, and Milky Way ultraviolet to near-infrared extinction curves. Astrophys. J. 594, 279–293 (2003).

    Article  ADS  CAS  Google Scholar 

  68. Hamann, F. et al. Extremely red quasars in BOSS. Mon. Not. R. Astron. Soc. 464, 3431–3463 (2017).

    Article  ADS  CAS  Google Scholar 

  69. Veilleux, S. et al. The surprising absence of absorption in the far-ultraviolet spectrum of Mrk 231. Astrophys. J. 764, 15 (2013).

    Article  ADS  Google Scholar 

  70. Bergeron, J. & Boissé, P. Extent and structure of intervening absorbers from absorption lines redshifted on quasar emission lines. Astron. Astrophys. 604, A37 (2017).

    Article  ADS  Google Scholar 

  71. Lacour, S. et al. Velocity dispersion of the high rotational levels of H2. Astrophys. J. 627, 251–262 (2005).

    Article  ADS  CAS  Google Scholar 

  72. Noterdaeme, P. et al. Excitation mechanisms in newly discovered H2-bearing damped Lyman-α clouds: systems with low molecular fractions. Astron. Astrophys. 474, 393–407 (2007).

    Article  ADS  CAS  Google Scholar 

  73. Balashev, S. A., Varshalovich, D. A. & Ivanchik, A. V. Directional radiation and photodissociation regions in molecular hydrogen clouds. Astron. Lett. 35, 150–166 (2009).

    Article  ADS  CAS  Google Scholar 

  74. Noterdaeme, P. et al. Down-the-barrel observations of a multi-phase quasar outflow at high redshift. VLT/X-shooter spectroscopy of the proximate molecular absorber at z = 2.631 towards SDSS J001514+184212. Astron. Astrophys. 646, A108 (2021).

    Article  CAS  Google Scholar 

  75. Kosenko, D. N. et al. HD molecules at high redshift: cosmic ray ionization rate in the diffuse interstellar medium. Mon. Not. R. Astron. Soc. 505, 3810–3822 (2021).

    Article  ADS  CAS  Google Scholar 

  76. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the Sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  CAS  Google Scholar 

  77. Noterdaeme, P. et al. Spotting high-z molecular absorbers using neutral carbon. Results from a complete spectroscopic survey with the VLT. Astron. Astrophys. 612, A58 (2018).

    Article  Google Scholar 

  78. Balashev, S. A. & Kosenko, D. N. Neutral carbon in diffuse interstellar medium: abundance matching with H2 for damped Lyman alpha systems at high redshifts. Mon. Not. R. Astron. Soc. 527, 12109–12119 (2024).

    Article  ADS  Google Scholar 

  79. Schroder, K., Staemmler, V., Smith, M. D., Flower, D. R. & Jaquet, R. Excitation of the fine-structure transitions of C in collisions with ortho- and para-H2. J. Phys. B: At. Mol. Phys. 24, 2487–2502 (1991).

    Article  ADS  Google Scholar 

  80. Abrahamsson, E., Krems, R. V. & Dalgarno, A. Fine-structure excitation of O i and C i by impact with atomic hydrogen. Astrophys. J. 654, 1171–1174 (2007).

    Article  ADS  CAS  Google Scholar 

  81. Staemmler, V. & Flower, D. R. Excitation of the C(2p2. 3Pj) fine structure states in collisions with He(1s2 1S0). J. Phys. B: At. Mol. Phys. 24, 2343–2351 (1991).

    Article  ADS  CAS  Google Scholar 

  82. Le Petit, F., Nehmé, C., Le Bourlot, J. & Roueff, E. A model for atomic and molecular interstellar gas: the Meudon PDR code. Astrophys. J. Suppl. Ser. 164, 506–529 (2006).

    Article  ADS  Google Scholar 

  83. Klimenko, V. V. & Balashev, S. A. Physical conditions in the diffuse interstellar medium of local and high-redshift galaxies: measurements based on the excitation of H2 rotational and C i fine-structure levels. Mon. Not. R. Astron. Soc. 498, 1531–1549 (2020).

    Article  ADS  CAS  Google Scholar 

  84. Sternberg, A., Le Petit, F., Roueff, E. & Le Bourlot, J. H i-to-H2 transitions and H i column densities in galaxy star-forming regions. Astrophys. J. 790, 10 (2014).

    Article  ADS  Google Scholar 

  85. Bialy, S. & Sternberg, A. Analytic H i-to-H2 photodissociation transition profiles. Astrophys. J. 822, 83 (2016).

    Article  ADS  Google Scholar 

  86. Astropy Collaboration. et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    Article  ADS  Google Scholar 

  87. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  88. Harris, C. R. et al. Array programming with NumPy. Nature 585, 357–362 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bradley, L. et al. astropy/photutils: 1.12.0. Zenodo https://doi.org/10.5281/zenodo.10967176 (2024).

  90. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.B. is supported by RSF grant no. 23-12-00166 and thanks IAP for hospitality, as this was where part of this work was done. The research leading to these results received support from the French Agence Nationale de la Recherche (ANR grant no. 17-CE31-0011-01/project HIH2, principal investigator P.N.). N.G. acknowledges the NRAO for generous financial support for the sabbatical visit to Socorro during which a part of this work was done.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and P.N. led the analysis and wrote the manuscript. S.B. modelled the physical conditions. P.N. designed the optical observations. N.G. performed the analysis of the ALMA data. J.-K.K. reduced the X-shooter data. The post-processing was done by R.C. F.C., S.L. and A.O. contributed to the ALMA observing proposal. P.P. and R.S. contributed to the VLT proposal. All authors contributed to the text and aided in interpreting the results.

Corresponding authors

Correspondence to Sergei Balashev or Pasquier Noterdaeme.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Max Gronke, Tanya Urrutia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Hyper Suprime-Cam deep images of the field around J 012555.11−012925.00.

a, e, the original image. b, f, quasar’s point spread function (PSF) subtracted image. c, g, model of additional sources. d, h, residuals. The top and bottom panels correspond to g and r filters, respectively. The white cross and circle indicate the position of the quasar and the FWHM of the point spread function, respectively.

Extended Data Fig. 2 Spatial profile of the 2D X-shooter spectrum of J 012555.11−012925.00.

The data (black lines with error bars) is shown here collapsed into three a, b, c, wavelength regions (indicated in the top right corner). The spatial profile is modeled by the sum (green) of two Moffat profiles, corresponding to the quasar (blue) and the companion galaxy (red). The error bars indicate the standard deviation of the collapsed flux, while the colored stripes represent the 0.683 credible interval of the models.

Extended Data Fig. 3 Spectral regions around C II 1,334 Å and Lyα lines at z = 2.622.

ac, C II 1,334 Å, line. df, Lyα line. The strong C II and Lyα absorption suppress light from the quasar’s central engine, acting like a coronagraph which reveals the ~ 10 times fainter emission from the host galaxy as residual emission in the absorption trough. a, d, the portions of the 1D X-shooter spectrum extracted along the quasar trace, with cyan and blue dashed lines indicating the zero flux level and the average line flux residual, respectively. The error bars represent the standard deviation of the measured flux. b, e, the 2D X-shooter spectrum (smoothed for illustration purposes) of the same spectral regions. c, f, the spatial profiles integrated along the dispersion axis, with the blue histogram corresponding to regions within the saturated lines (black dashed boxes in b, e), while the red filled histogram correspond to the continuum emission. This faint emission clearly extends beyond the point spread function, in agreement with an origin in an extended object. In e, the blob at λ ~ 4,430 − 4,465 Å corresponds to the extended Lyα emission seen in the bottom of the extremely strong Lyα absorption line. The red dotted and blue dashed lines denote the centroids of the ALMA CO emission of the companion and quasar host galaxies, respectively in both spatial and velocity space, with the stripe indicating their velocity spread.

Extended Data Fig. 4 Line and continuum ALMA images of the field around J 012555.11−012925.00.

a, b, c, The integrated emission of CO(3-2) and C I(2-1) lines, together with CO(7-6)/(3-2) line ratios, respectively, centered on the companion galaxy. d, e, ALMA band 6 and 3 wideband continuum images, respectively. The gray contours indicate the CO(7-6) emission shown in Fig. 1. The green hatch ellipses in each panel represent the synthesized beam.

Extended Data Fig. 5 A full view of the X-shooter spectrum of J 012555.11−012925.00.

The black, purple, green lines show respectively the observed spectrum, the quasar composite spectrum from62 and the same composite reddened by an SMC-like extinction law with AV = 0.2 at z = 2.66. The blue solid line depicts the continuum component of the quasar spectrum (i.e. removing emission lines), while the blue dashed line corresponds to this continuum component reddened by the same extinction. The red spectrum is the sum of the reddened continuum and the unreddened emission lines and clearly reproduces much better the emission lines redwards of Ly-α. This indicates that the continuum light from the quasar accretion disc passes through dusty gas, while light from the emission line regions is almost unaffected, implying that dust is confined in much smaller regions. b, c indicate zoom-in on the spectral region around C IV and C III] emission lines. The position of metal absorption lines associated with the proximate DLA are marked by grey ticks and labels.

Extended Data Fig. 6 Fit to the line profiles of H2 lines associated with the proximate absorber at z = 2.662 towards J 012555.11−012925.00.

The black lines represent the observed normalized spectrum, with the error bars representing the standard deviation. The green, violet, and red stripes indicate the profiles of H2 components A, B, and the total profile, respectively. Black and green dashed horizontal lines at the bottom of each panel show the zero flux level and partial coverage, respectively. Blue step-like lines at the top of each panel display the residuals, with horizontal lines representing − 2σ, 0, and 2σ levels. Red horizontal segments identify the band (Lyman/Werner, vibrational level of upper and lower state) as well as main rotational levels (numbers above ticks, only shown for component A for clarity). Note that lines from low rotational levels in the L2-0 band (around 3950 Å) are blended with the strong Lyα line from intervening H I at z = 2.25, identified through its associated metal transitions.

Extended Data Fig. 7 Fit to the C I absorption line profiles associated with the proximate absorber at z ≈ 2.662 towards J 012555.11−012925.00.

The graphical elements are the same as in Extended Data Fig. 6 with profiles of additional components shown by gray lines. Each profile contains absorption from three fine-structure levels of the ground state.

Extended Data Fig. 8 Possible detection of CO absorption lines at z = 2.662 in the proximate absorber towards J 012555.11−012925.00.

a-f, The fit to individual CO bands. The black line show the observed spectrum, while the green, blue and red lines represent the two individual components and total line profiles. g, The stack of the observed spectrum (black) and total profile model (red).

Extended Data Table 1 Details of ALMA spectral line cubes and detected line emission
Extended Data Table 2 Spectral energy distribution fitting of the companion galaxy and the quasar host galaxy using bagpipes

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balashev, S., Noterdaeme, P., Gupta, N. et al. Quasar radiation transforms the gas in a merging companion galaxy. Nature 641, 1137–1141 (2025). https://doi.org/10.1038/s41586-025-08966-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08966-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing