Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Air pollution modulates trends and variability of the global methane budget

Abstract

Air pollution affects climate through various complex interactions1. It perturbs the Earth’s radiative energy balance and alters the atmospheric oxidation capacity, which determines the lifetimes of short-lived climate forcers, such as methane1. A key mechanism in this dynamic is the impact of air pollutants on the hydroxyl radical (OH), the most important oxidant in the troposphere, which accounts for approximately 90% of the methane chemical sink2. However, a comprehensive quantification of the interactions between air pollutants, OH and methane over decadal timescales remains incomplete2. Here we develop an integrated observation-driven and model-driven approach to quantify how variations in key air pollutants influence the methane chemical sink and alter the methane budget. Our results indicate that, from 2005 to 2021, enhanced tropospheric ozone, increased water vapour and decreased carbon monoxide levels collectively contributed to a 1.3–2.0 Tg year−1 increase per year in the global methane sink, thereby buffering atmospheric methane growth rates. This increase in the methane sink was primarily concentrated in tropical regions and exhibited a north–south asymmetry. Periods of high methane growth were typically linked to abrupt OH level declines driven by fluctuations in air pollutants, especially during extreme events such as mega wildfires and the COVID-19 pandemic. Our study suggests a trade-off between O3 pollution control and methane removal mediated by OH and highlights the risk of increasing carbon monoxide emissions from widespread wildfires.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Year-to-year variations in tropospheric OH concentrations and CH4 growth rates.
Fig. 2: Global tropospheric [OH] and CH4 sink changes driven by individual OH precursors.
Fig. 3: Spatial distribution of decadal changes in tropospheric [OH] and CH4 sink.
Fig. 4: Contributions of individual OH precursors to global CH4 sink changes during unusual years.

Similar content being viewed by others

Data availability

The atmospheric composition concentrations simulated by GEOSCCM and CESM1 CAM4-chem were downloaded from https://data.ceda.ac.uk/badc. The atmospheric methane growth rate from the NOAA/GML observational network was obtained from https://gml.noaa.gov/ccgg/trends_ch4/. The CAMS EAC4 chemical reanalysis and EGG4 were downloaded from https://www.ecmwf.int/en/research/climate-reanalysis/cams-reanalysis. The TCR-2 chemical reanalysis data were downloaded from https://tes.jpl.nasa.gov/tes/chemical-reanalysis/. The MERRA-2 reanalysis data were downloaded from https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2. The ERA5 reanalysis data were downloaded from https://www.ecmwf.int/en/forecasts/dataset/ecmwf-reanalysis-v5. The AURA OMI/MLS tropospheric O3 column was downloaded from https://acd-ext.gsfc.nasa.gov/Data_services/cloud_slice/new_data.html. The total O3 column of SBUV Merged Ozone Data Set was downloaded from https://acd-ext.gsfc.nasa.gov/Data_services/merged/instruments.html. The QA4ECV tropospheric NO2 product was downloaded from https://www.temis.nl/airpollution/no2.php. The NASA tropospheric NO2 products were downloaded from https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary. The CEDS emission inventory was downloaded from https://zenodo.org/records/4741285. The EDGAR emission inventory was downloaded from https://edgar.jrc.ec.europa.eu/. The global gridded distribution of the OH changes relative to 2005 owing to individual OH precursors and the source data are available at Figshare (https://doi.org/10.6084/m9.figshare.27850596). Source data are provided with this paper.

Code availability

Code and documentation for the chemical box model DSMACC are available at https://github.com/barronh/DSMACC.

References

  1. Szopa, S. et al. in Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change Ch. 6 (eds Masson-Delmotte, V. et al.) 817–922 (Cambridge Univ. Press, 2023).

  2. Saunois, M. et al. The global methane budget 2000–2017. Earth Syst. Sci. Data 12, 1561–1623 (2020).

    Article  ADS  Google Scholar 

  3. Rigby, M. et al. Renewed growth of atmospheric methane. Geophys. Res. Lett. 35, L22805 (2008).

    Article  ADS  Google Scholar 

  4. Zhang, Z. et al. Anthropogenic emission is the main contributor to the rise of atmospheric methane during 1993–2017. Natl Sci. Rev. 9, nwab200 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Qu, Z. et al. Inverse modeling of 2010–2022 satellite observations shows that inundation of the wet tropics drove the 2020–2022 methane surge. Proc. Natl Acad. Sci. 121, e2402730121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Turner, A. J., Frankenberg, C. & Kort, E. A. Interpreting contemporary trends in atmospheric methane. Proc. Natl Acad. Sci. 116, 2805–2813 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lelieveld, J., Gromov, S., Pozzer, A. & Taraborrelli, D. Global tropospheric hydroxyl distribution, budget and reactivity. Atmos. Chem. Phys. 16, 12477–12493 (2016).

    Article  ADS  CAS  Google Scholar 

  8. Kuklinska, K., Wolska, L. & Namiesnik, J. Air quality policy in the U.S. and the EU – a review. Atmos. Pollut. Res. 6, 129–137 (2015).

    Article  Google Scholar 

  9. Zhao, Y. et al. On the role of trend and variability in the hydroxyl radical (OH) in the global methane budget. Atmos. Chem. Phys. 20, 13011–13022 (2020).

    Article  ADS  CAS  Google Scholar 

  10. Naik, V. et al. Preindustrial to present-day changes in tropospheric hydroxyl radical and methane lifetime from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmos. Chem. Phys. 13, 5277–5298 (2013).

    Article  ADS  Google Scholar 

  11. Voulgarakis, A. et al. Analysis of present day and future OH and methane lifetime in the ACCMIP simulations. Atmos. Chem. Phys. 13, 2563–2587 (2013).

    Article  ADS  Google Scholar 

  12. Turner, A. J., Fung, I., Naik, V., Horowitz, L. W. & Cohen, R. C. Modulation of hydroxyl variability by ENSO in the absence of external forcing. Proc. Natl Acad. Sci. 115, 8931–8936 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. He, J., Naik, V. & Horowitz, L. W. Hydroxyl radical (OH) response to meteorological forcing and implication for the methane budget. Geophys. Res. Lett. 48, e2021GL094140 (2021).

    Article  ADS  CAS  Google Scholar 

  14. Stevenson, D. S. et al. Trends in global tropospheric hydroxyl radical and methane lifetime since 1850 from AerChemMIP. Atmos. Chem. Phys. 20, 12905–12920 (2020).

    Article  ADS  CAS  Google Scholar 

  15. Nicely, J. M. et al. A machine learning examination of hydroxyl radical differences among model simulations for CCMI-1. Atmos. Chem. Phys. 20, 1341–1361 (2020).

    Article  ADS  CAS  Google Scholar 

  16. Duncan, B. N. et al. Opinion: Beyond global means – novel space-based approaches to indirectly constrain the concentrations of and trends and variations in the tropospheric hydroxyl radical (OH). Atmos. Chem. Phys. 24, 13001–13023 (2024).

    Article  CAS  Google Scholar 

  17. Baublitz, C. B. et al. An observation-based, reduced-form model for oxidation in the remote marine troposphere. Proc. Natl Acad. Sci 120, e2209735120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Shutter, J. D. et al. Interannual changes in atmospheric oxidation over forests determined from space. Sci. Adv. 10, eadn1115 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu, Q., Fiore, A. M., Correa, G., Lamarque, J.-F. & Worden, H. The impact of internal climate variability on OH trends between 2005 and 2014. Environ. Res. Lett. 19, 064032 (2024).

    Article  ADS  CAS  Google Scholar 

  20. Wolfe, G. M. et al. Mapping hydroxyl variability throughout the global remote troposphere via synthesis of airborne and satellite formaldehyde observations. Proc. Natl Acad. Sci. 116, 11171–11180 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Anderson, D. C. et al. Technical note: Constraining the hydroxyl (OH) radical in the tropics with satellite observations of its drivers – first steps toward assessing the feasibility of a global observation strategy. Atmos. Chem. Phys. 23, 6319–6338 (2023).

    Article  ADS  CAS  Google Scholar 

  22. Anderson, D. C. et al. Trends and interannual variability of the hydroxyl radical in the remote tropics during boreal autumn inferred from satellite proxy data. Geophys. Res. Lett. 51, e2024GL108531 (2024).

    Article  ADS  Google Scholar 

  23. Souri, A. H. et al. Enhancing long-term trend simulation of the global tropospheric hydroxyl (TOH) and its drivers from 2005 to 2019: a synergistic integration of model simulations and satellite observations. Atmos. Chem. Phys. 24, 8677–8701 (2024).

    Article  CAS  Google Scholar 

  24. Pimlott, M. A. et al. Investigating the global OH radical distribution using steady-state approximations and satellite data. Atmos. Chem. Phys. 22, 10467–10488 (2022).

    Article  ADS  CAS  Google Scholar 

  25. Nicely, J. M. et al. Changes in global tropospheric OH expected as a result of climate change over the last several decades. J. Geophys. Res. Atmos. 123, 10,774–710,795 (2018).

    Article  Google Scholar 

  26. Rowlinson, M. J. et al. Impact of El Niño–Southern Oscillation on the interannual variability of methane and tropospheric ozone. Atmos. Chem. Phys. 19, 8669–8686 (2019).

    Article  ADS  CAS  Google Scholar 

  27. Peng, S. et al. Wetland emission and atmospheric sink changes explain methane growth in 2020. Nature 612, 477–482 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Naus, S. et al. Constraints and biases in a tropospheric two-box model of OH. Atmos. Chem. Phys. 19, 407–424 (2019).

    Article  CAS  Google Scholar 

  29. Patra, P. K. et al. Methyl chloroform continues to constrain the hydroxyl (OH) variability in the troposphere. J. Geophys. Res. Atmos. 126, e2020JD033862 (2021).

    Article  ADS  CAS  Google Scholar 

  30. Thompson, R. L. et al. Estimation of the atmospheric hydroxyl radical oxidative capacity using multiple hydrofluorocarbons (HFCs). Atmos. Chem. Phys. 24, 1415–1427 (2024).

    Article  ADS  CAS  Google Scholar 

  31. Zheng, B. et al. Rapid decline in carbon monoxide emissions and export from East Asia between years 2005 and 2016. Environ. Res. Lett. 13, 044007 (2018).

    Article  ADS  Google Scholar 

  32. Zheng, B. et al. Global atmospheric carbon monoxide budget 2000–2017 inferred from multi-species atmospheric inversions. Earth Syst. Sci. Data 11, 1411–1436 (2019).

    Article  ADS  Google Scholar 

  33. Wang, H. et al. Global tropospheric ozone trends, attributions, and radiative impacts in 1995–2017: an integrated analysis using aircraft (IAGOS) observations, ozonesonde, and multi-decadal chemical model simulations. Atmos. Chem. Phys. 22, 13753–13782 (2022).

    Article  ADS  CAS  Google Scholar 

  34. Held, I. M. & Soden, B. J. Water vapor feedback and global warming. Annu. Rev. Energy Environ. 25, 441–475 (2000).

    Article  Google Scholar 

  35. Crippa, M. et al. GHG emissions of all world countries. Publications Office of the European Union https://doi.org/10.2760/953322 (2023).

  36. Hoesly, R. M. et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018).

    Article  ADS  CAS  Google Scholar 

  37. Miyazaki, K. et al. Global tropospheric ozone responses to reduced NOx emissions linked to the COVID-19 worldwide lockdowns. Sci. Adv. 7, eabf7460 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lan, X., Thoning, K. W. & Dlugokencky, E. J. Trends in globally-averaged CH4, N2O, and SF6 determined from NOAA Global Monitoring Laboratory measurements. Global Monitoring Laboratory https://doi.org/10.15138/P8XG-AA10 (2022).

  39. Feng, L., Palmer, P. I., Parker, R. J., Lunt, M. F. & Bösch, H. Methane emissions are predominantly responsible for record-breaking atmospheric methane growth rates in 2020 and 2021. Atmos. Chem. Phys. 23, 4863–4880 (2023).

    Article  ADS  CAS  Google Scholar 

  40. Qu, Z. et al. Attribution of the 2020 surge in atmospheric methane by inverse analysis of GOSAT observations. Environ. Res. Lett. 17, 094003 (2022).

    Article  ADS  CAS  Google Scholar 

  41. Ziemke, J. R. et al. NASA satellite measurements show global-scale reductions in free tropospheric ozone in 2020 and again in 2021 during COVID-19. Geophys. Res. Lett. 49, e2022GL098712 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zheng, B. et al. Record-high CO2 emissions from boreal fires in 2021. Science 379, 912–917 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  43. Fischer, E. V. et al. Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmos. Chem. Phys. 14, 2679–2698 (2014).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Knoblauch, C., Beer, C., Liebner, S., Grigoriev, M. N. & Pfeiffer, E.-M. Methane production as key to the greenhouse gas budget of thawing permafrost. Nat. Clim. Change 8, 309–312 (2018).

    Article  ADS  CAS  Google Scholar 

  45. Unger, N., Zheng, Y., Yue, X. & Harper, K. L. Mitigation of ozone damage to the world’s land ecosystems by source sector. Nat. Clim. Change 10, 134–137 (2020).

    Article  ADS  CAS  Google Scholar 

  46. Fleming, Z. et al. Tropospheric Ozone Assessment Report: present-day ozone distribution and trends relevant to human health. Elementa 6, 12 (2018).

    Google Scholar 

  47. Hou, X., Wild, O., Zhu, B. & Lee, J. Future tropospheric ozone budget and distribution over east Asia under a net-zero scenario. Atmos. Chem. Phys. 23, 15395–15411 (2023).

    Article  ADS  CAS  Google Scholar 

  48. Zheng, B. et al. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 7, eabh2646 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  49. Hegglin, M. I. & Shepherd, T. G. Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat. Geosci. 2, 687–691 (2009).

    Article  ADS  CAS  Google Scholar 

  50. Zhao, Y. et al. Reconciling the bottom-up and top-down estimates of the methane chemical sink using multiple observations. Atmos. Chem. Phys. 23, 789–807 (2023).

    Article  ADS  CAS  Google Scholar 

  51. Frith, S. M. et al. Recent changes in total column ozone based on the SBUV Version 8.6 Merged Ozone Data Set. J. Geophys. Res. Atmos. 119, 9735–9751 (2014).

    Article  ADS  CAS  Google Scholar 

  52. Ziemke, J. R. et al. Tropospheric ozone determined from Aura OMI and MLS: evaluation of measurements and comparison with the Global Modeling Initiative’s Chemical Transport Model. J. Geophys. Res. 111, D19303 (2006).

    ADS  Google Scholar 

  53. Boersma, K. F. et al. Improving algorithms and uncertainty estimates for satellite NO2 retrievals: results from the quality assurance for the essential climate variables (QA4ECV) project. Atmos. Meas. Tech. 11, 6651–6678 (2018).

    Article  CAS  Google Scholar 

  54. Krotkov, N. A. et al. OMI/Aura NO2 Cloud-Screened Total and Tropospheric Column L3 Global Gridded 0.25 degree x 0.25 degree V3. NASA Goddard Space Flight Center, Goddard Earth Sciences Data and Information Services Center (GES DISC) https://doi.org/10.5067/Aura/OMI/DATA3007 (2019).

  55. Inness, A. et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 19, 3515–3556 (2019).

    Article  ADS  CAS  Google Scholar 

  56. Agustí-Panareda, A. et al. Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020. Atmos. Chem. Phys. 23, 3829–3859 (2023).

    Article  ADS  Google Scholar 

  57. Miyazaki, K. et al. Updated tropospheric chemistry reanalysis and emission estimates, TCR-2, for 2005–2018. Earth Syst. Sci. Data 12, 2223–2259 (2020).

    Article  ADS  Google Scholar 

  58. Zhao, Y. et al. Influences of hydroxyl radicals (OH) on top-down estimates of the global and regional methane budgets. Atmos. Chem. Phys. 20, 9525–9546 (2020).

    Article  ADS  CAS  Google Scholar 

  59. Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).

    Article  ADS  Google Scholar 

  60. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Article  ADS  Google Scholar 

  61. Geddes, J. A., Martin, R. V., Boys, B. L. & Donkelaar, A. V. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 124, 281–289 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Anderson, D. C. et al. Spatial and temporal variability in the hydroxyl (OH) radical: understanding the role of large-scale climate features and their influence on OH through its dynamical and photochemical drivers. Atmos. Chem. Phys. 21, 6481–6508 (2021).

    Article  ADS  CAS  Google Scholar 

  63. Shah, V. et al. Nitrogen oxides in the free troposphere: implications for tropospheric oxidants and the interpretation of satellite NO2 measurements. Atmos. Chem. Phys. 23, 1227–1257 (2023).

    Article  ADS  CAS  Google Scholar 

  64. Morgenstern, O. et al. Review of the global models used within phase 1 of the Chemistry–Climate Model Initiative (CCMI). Geosci. Model Dev. 10, 639–671 (2017).

    Article  ADS  Google Scholar 

  65. Tilmes, S. et al. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI). Geosci. Model Dev. 9, 1853–1890 (2016).

    Article  ADS  CAS  Google Scholar 

  66. Molod, A., Takacs, L., Suarez, M. & Bacmeister, J. Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2. Geosci. Model Dev. 8, 1339–1356 (2015).

    Article  ADS  Google Scholar 

  67. Oman, L. D. et al. The ozone response to ENSO in Aura satellite measurements and a chemistry-climate simulation. J. Geophys. Res. Atmos. 118, 965–976 (2013).

    Article  ADS  CAS  Google Scholar 

  68. Nielsen, J. E. et al. Chemical mechanisms and their applications in the Goddard Earth Observing System (GEOS) earth system model. J. Adv. Model. Earth Syst. 9, 3019–3044 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Granier, C. et al. Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Clim. Change 109, 163 (2011).

    Article  ADS  CAS  Google Scholar 

  70. Duncan, B. N., Strahan, S. E., Yoshida, Y., Steenrod, S. D. & Livesey, N. Model study of the cross-tropopause transport of biomass burning pollution. Atmos. Chem. Phys. 7, 3713–3736 (2007).

    Article  ADS  CAS  Google Scholar 

  71. Horowitz, L. W., Liang, J., Gardner, G. M. & Jacob, D. J. Export of reactive nitrogen from North America during summertime: sensitivity to hydrocarbon chemistry. J. Geophys. Res. Atmos. 103, 13451–13476 (1998).

    Article  ADS  CAS  Google Scholar 

  72. Zhao, Y. et al. Inter-model comparison of global hydroxyl radical (OH) distributions and their impact on atmospheric methane over the 2000–2016 period. Atmos. Chem. Phys. 19, 13701–13723 (2019).

    Article  ADS  CAS  Google Scholar 

  73. Emmerson, K. M. & Evans, M. J. Comparison of tropospheric gas-phase chemistry schemes for use within global models. Atmos. Chem. Phys. 9, 1831–1845 (2009).

    Article  ADS  CAS  Google Scholar 

  74. Sander, S. P. et al. Chemical kinetics and photochemical data for use in atmospheric studies, evaluation number 17. JPL publication (NASA, 2011).

  75. Zhang, Z. et al. Enhanced response of global wetland methane emissions to the 2015–2016 El Niño-Southern Oscillation event. Environ. Res. Lett. 13, 074009 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  76. Wells, K. C. et al. Satellite isoprene retrievals constrain emissions and atmospheric oxidation. Nature 585, 225–233 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wells, K. C. et al. Next-generation isoprene measurements from space: detecting daily variability at high resolution. J. Geophys. Res. Atmos. 127, e2021JD036181 (2022).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by the National Natural Science Foundation of China (grant numbers 42305101, 42375096 and 22188102). B.Z. acknowledges support from the Shenzhen Science and Technology Program (grant number ZDSYS20220606100806014). Y.Z. acknowledges support from the Shandong Provincial Natural Science Foundation (grant number 2022HWYQ-066). P.C. acknowledges support from the European Space Agency Climate Space RECCAP2-CS project (ESA ESRIN/4000144908) and the CALIPSO project funded by the generosity of Schmidt Science.

Author information

Authors and Affiliations

Authors

Contributions

B.Z. and Y.Z. designed and conceptualized the study. Y.Z. performed DSMACC simulations and created the figures. B.Z. and Y. Z. wrote the original draft. M.S., P.C., M.I.H., S.L., Y.L. and P.B. reviewed and commented on the manuscript.

Corresponding author

Correspondence to Bo Zheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Comparison of the global tropospheric mean [OH] with MCF-based and HFC-based inversions.

Tropospheric [OH] variations calculated using MOZART (pink) and GEOS-Chem (purple) chemical mechanisms (n = 144) are compared with MCF-based inversions from the 3D model as described by Patra et al.29 and by Naus et al.28, as well as with HFC-based inversions from the box model as described by Thompson et al.30.

Source Data

Extended Data Fig. 2 Contributions of NOx from the free troposphere to interannual variation of global [OH]trop-M and decadal changes in the chemical loss of CH4.

a, Interannual variations of [OH]trop-M. b, Decadal changes in the chemical loss of CH4 (n = 3). Box plots and error bars indicate the means and ranges of individual calculations, each represented by grey circles.

Source Data

Extended Data Fig. 3 Contributions of individual OH precursors to decadal changes in tropospheric [OH] in South Asia.

ac, Spatial patterns of decadal changes in mean tropospheric OH concentrations ([OH]trop-M) driven by tropospheric O3, H2O(g) and boundary-layer NOx. d, Regional mean [OH]trop-M changes over South Asia. The n values are the same as in Fig. 2. Box plots and error bars indicate the means and ranges of individual calculations, each represented by grey circles.

Source Data

Extended Data Fig. 4 Contributions of boundary-layer NOx to anomalies in [OH]trop-M during the COVID-19 lockdown in 2020.

The lockdown period is March 2020 to May 2020 for the Eastern United States and Western Europe and February 2020 to March 2020 for Eastern China. Box plots and error bars indicate the means and ranges of individual calculations, each represented by grey circles (n = 3).

Source Data

Extended Data Fig. 5 Regional contributions of individual OH precursors to global CH4 sink changes during unusual years.

a, The rapid increase in the global CH4 sink following 2007 (mean values of 2008–2009 minus 2006–2007). b, Anomaly in the global CH4 sink during the El Niño event starting in 2015 (mean values of May 2015 to April 2016 minus May 2014 to April 2015). c,d, Anomalies in the global CH4 sink during the COVID-19 lockdown in 2020 (2020 minus 2019) and 2021 (2021 minus 2019). The n values are the same as in Fig. 2. Box plots and error bars indicate the means and ranges of individual calculations, each represented by grey circles.

Source Data

Extended Data Fig. 6 Contributions of NOx from the boundary layer, free troposphere and whole troposphere to global [OH]trop-M and CH4 sink changes during unusual years.

The unusual years include the El Niño event starting in 2015 (mean values of May 2015 to April 2016 minus May 2014 to April 2015) and the COVID-19 lockdown in 2020 (2020 minus 2019). a, [OH]trop-M. b, Chemical loss of CH4. Box plots and error bars indicate the means and ranges of individual calculations, each represented by grey circles (n = 3).

Source Data

Extended Data Fig. 7 Conceptual diagram illustrating how air pollution modulates global OH radicals and the CH4 chemical sink.

Red arrows indicate positive contributions and blue arrows show negative contributions. Grey arrows represent the interactions between climate and air quality measures, global warming and air pollution. The image elements in this figure (for example, plane, cattle, buildings and trees) are derived from https://pixabay.com/.

Extended Data Table 1 Satellite retrieval products used in this work
Extended Data Table 2 Reanalysis datasets used in this work

Supplementary information

Supplementary Information

This file contains Supplementary Figs. 1–5 and Supplementary Table 1.

Peer Review File

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zheng, B., Saunois, M. et al. Air pollution modulates trends and variability of the global methane budget. Nature 642, 369–375 (2025). https://doi.org/10.1038/s41586-025-09004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09004-z

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene