Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dating the evolution of oxygenic photosynthesis using La-Ce geochronology

Abstract

There is ongoing debate as to when oxygenic photosynthesis evolved on Earth1,2. Geochemical data from ancient sediments indicate localized or ephemeral photosynthetic O2 production before the Great Oxidation Event (GOE) approximately 2.5–2.3 billion years ago (Ga), and currently suggest Archaean origins, approximately 3 Ga or earlier3,4,5,6,7,8,9. However, sedimentary records of the early Earth often suffer from preservation issues, and poor control on the timing of oxidation leaves geochemical proxy data for the ancient presence of O2 open to critique10,11,12,13. Here, we report rare Earth element data from three different Archaean carbonate platforms preserved in greenstone belts of the northwest Superior Craton (Canada), which were deposited by the activity of marine photosynthetic bacteria 2.87 Ga, 2.85 Ga and 2.78 Ga. All three indicate O2 production before the GOE in the form of significant depletions in cerium (Ce), reflecting oxidative Ce removal from ancient seawater, as occurs today14. Using 138La-138Ce geochronology, we show that La/Ce fractionation, and thus Ce oxidation, occurred at the time of deposition, making these the oldest directly dated Ce anomalies. These results place the origin of oxygenic photosynthesis in the Mesoarchaean or earlier and bring an important new perspective on a long-standing debate regarding Earth’s biological and geochemical evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Archaean carbonate platforms targeted by this study.
Fig. 2: REE data reveal important negative Ce anomalies in Archaean carbonates from the Superior Craton.
Fig. 3: La-Ce geochronology demonstrating Archaean-age Ce anomalies.

Similar content being viewed by others

Data availability

All data generated during this study are included in the Supplementary Tables accompanying this Article and are also available from the HAL repository (HAL ID: hal-05057809, https://hal.science/view/index/docid/5057809).

References

  1. Cardona, T. Thinking twice about the evolution of photosynthesis. Open Biol. 9, 180246 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Sánchez-Baracaldo, P. & Cardona, T. On the origin of oxygenic photosynthesis and Cyanobacteria. New Phytol. 225, 1440–1446 (2020).

    Article  PubMed  Google Scholar 

  3. Anbar, A. D. et al. A whiff of oxygen before the great oxidation event? Science 317, 1903–1906 (2007).

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).

    Article  ADS  CAS  Google Scholar 

  5. Riding, R., Fralick, P. & Liang, L. Identification of an Archean marine oxygen oasis. Precambrian Res. 251, 232–237 (2014).

    Article  ADS  CAS  Google Scholar 

  6. Robbins, L. J. et al. Trace elements at the intersection of marine biological and geochemical evolution. Earth Sci. Rev. 163, 323–348 (2016).

    Article  ADS  CAS  Google Scholar 

  7. Eickmann, B. et al. Isotopic evidence for oxygenated Mesoarchaean shallow oceans. Nat. Geosci. 11, 133–138 (2018).

    Article  ADS  CAS  Google Scholar 

  8. Thoby, M. et al. Global importance of oxic molybdenum sinks prior to 2.6 Ga revealed by the Mo isotope composition of Precambrian carbonates. Geology 47, 559–562 (2019).

    Article  ADS  CAS  Google Scholar 

  9. Wilmeth, D. T. et al. Evidence for benthic oxygen production in Neoarchean lacustrine stromatolites. Geology 50, 907–911 (2022).

    Article  ADS  CAS  Google Scholar 

  10. Albut, G. et al. Modern rather than Mesoarchaean oxidative weathering responsible for the heavy stable Cr isotopic signatures of the 2.95 Ga old Ijzermijn iron formation (South Africa). Geochim. Cosmochim. Acta 228, 157–189 (2018).

    Article  ADS  CAS  Google Scholar 

  11. Albut, G. et al. Modern weathering in outcrop samples versus ancient paleoredox information in drill core samples from a Mesoarchaean marine oxygen oasis in Pongola Supergroup, South Africa. Geochim. Cosmochim. Acta 265, 330–353 (2019).

    Article  ADS  CAS  Google Scholar 

  12. Planavsky, N. J., Robbins, L. J., Kamber, B. S. & Schoenberg, R. Weathering, alteration and reconstructing Earth’s oxygenation. Interface Focus https://doi.org/10.1098/rsfs.2019.0140 (2020).

  13. Slotznick, S. P. et al. Reexamination of 2.5-Ga “whiff” of oxygen interval points to anoxic ocean before GOE. Sci. Adv. 8, eabj7190 (2022).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  14. German, C. R. & Elderfield, H. Application of the Ce anomaly as a paleoredox indicator: the ground rules. Paleoceanography 5, 823–833 (1990).

    Article  ADS  Google Scholar 

  15. Frei, R. et al. Oxidative elemental cycling under the low O2 Eoarchean atmosphere. Sci. Rep. 6, 21058 (2016).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  16. Olson, S. L., Kump, L. R. & Kasting, J. F. Quantifying the areal extent and dissolved oxygen concentrations of Archean oxygen oases. Chem. Geol. 362, 35–43 (2013).

    Article  ADS  CAS  Google Scholar 

  17. Lalonde, S. V. & Konhauser, K. O. Benthic perspective on Earth’s oldest evidence for oxygenic photosynthesis. Proc. Nat Acad. Sci. USA 112, 995–1000 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W. & Larkum, A. W. Early Archean origin of Photosystem II. Geobiology 17, 127–150 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Boden, J. S., Konhauser, K. O., Robbins, L. J. & Sánchez-Baracaldo, P. Timing the evolution of antioxidant enzymes in cyanobacteria. Nat. Commun. 12, 4742 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  20. Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. Biol. Sci. 288, 20210675 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  21. Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet Sci. 44, 647–683 (2013).

    Article  ADS  Google Scholar 

  22. Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002).

    Article  ADS  PubMed  Google Scholar 

  23. French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Nat Acad. Sci. USA 112, 5915–5920 (2015).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  24. Koehler, M. C., Buick, R. B., Kipp, M. A., Stüeken, E. E. & Zaloumis, J. Transient surface oxean oxygenation recorded in the ~2.66-Ga Jeerinah Formation, Australia. Proc. Nat Acad. Sci. USA 115, 7711–7716 (2018).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  25. Anbar, A. D. et al. Technical comment on “Reexamination of 2.5-Ga ‘whiff’ of oxygen interval points to anoxic ocean before GOE”. Sci. Adv. 9, sciadv.abq3736 (2023).

    Article  ADS  Google Scholar 

  26. Hofmann, H. J., Thurston, P. C. & Wallace, H. Archean stromatolites from Uchi greenstone belt, northwestern Ontario. Geol. Assoc. Can. Spec. Pap. 28, 125–132 (1985).

    Google Scholar 

  27. McIntyre, T. & Fralick, P. Sedimentology and geochemistry of the 2930 Ma Red Lake–Wallace Lake Carbonate Platform, Western Superior Province, Canada. Depos. Rec. 3, 258–287 (2017).

    Article  Google Scholar 

  28. Afroz, M., Fralick, P. W. & Lalonde, S. V. Sedimentology and geochemistry of basinal lithofacies in the Mesoarchean (2.93 Ga) Red Lake carbonate platform, northwest Ontario, Canada. Precambrian Res. 388, 106996 (2023).

    Article  CAS  Google Scholar 

  29. Ramsay, B. Environmental Control of Seawater Geochemistry in a Mesoarchean Peritidal System, Woman Lake, Superior Province. MSc thesis, Lakehead Univ. (2020).

  30. Fralick, P. & Riding, R. Steep Rock Lake: sedimentology and geochemistry of an Archean carbonate platform. Earth Sci. Rev. 151, 132–175 (2015).

    Article  ADS  CAS  Google Scholar 

  31. Bau, M. Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect. Geochim. Cosmochim. Acta 63, 67–77 (1999).

    Article  ADS  CAS  Google Scholar 

  32. Bau, M. & Dulski, P. Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambrian Res. 79, 37–55 (1996).

    Article  ADS  CAS  Google Scholar 

  33. Lawrence, M. G., Greig, A., Collerson, K. D. & Kamber, B. S. Rare earth element and yttrium variability in South East Queensland waterways. Aquat. Geochem. 12, 39–72 (2006).

    Article  CAS  Google Scholar 

  34. Wallace, M. W. et al. Oxygenation history of the Neoproterozoic to early Phanerozoic and the rise of land plants. Earth Planet Sci. Lett. 466, 12–19 (2017).

    Article  ADS  CAS  Google Scholar 

  35. Sholkovitz, E. R., Landing, W. M. & Lewis, B. L. Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim. Cosmochim. Acta 58, 1567–1579 (1994).

    Article  ADS  CAS  Google Scholar 

  36. De Carlo, E. H., Wen, X.-Y. & Irving, M. The influence of redox reactions on the uptake of dissolved Ce by suspended Fe and Mn oxide particles. Aquat. Geochem. 3, 357–389 (1997).

    Article  CAS  Google Scholar 

  37. Möller, P. & Bau, M. Rare-earth patterns with positive cerium anomaly in alkaline waters from Lake Van, Turkey. Earth Planet Sci. Lett. 117, 671–676 (1993).

    Article  ADS  Google Scholar 

  38. Goldstein, S. J. & Jacobsen, S. B. Rare earth elements in river waters. Earth Planet Sci. Lett. 89, 35–47 (1988).

    Article  ADS  CAS  Google Scholar 

  39. Planavsky, N. et al. Iron-oxidizing microbial ecosystems thrived in late Paleoproterozoic redox-stratified oceans. Earth Planet Sci. Lett. 286, 230–242 (2009).

    Article  ADS  CAS  Google Scholar 

  40. Moffett, J. W. Microbially mediated cerium oxidation in sea water. Nature 345, 421–423 (1990).

    Article  ADS  CAS  Google Scholar 

  41. Pecoits, E. et al. Atmospheric hydrogen peroxide and Eoarchean iron formations. Geobiology 13, 1–14 (2014).

    Article  PubMed  Google Scholar 

  42. Warchola, T. et al. Petrology and geochemistry of the Boolgeeda Iron Formation, Hamersley Basin, Western Australia. Precambrian Res. 316, 155–173 (2018).

    Article  ADS  CAS  Google Scholar 

  43. Hodgskiss, M. S. W., Lalonde, S. V., Crockford, P. W. & Hutchings, A. M. A carbonate molybdenum isotope and cerium anomaly record across the end-GOE: local records of global oxygenation. Geochim. Cosmochim. Acta 313, 313–339 (2021).

    Article  ADS  CAS  Google Scholar 

  44. Liu, X.-M. et al. A persistently low level of atmospheric oxygen in Earth’s middle age. Nat. Commun. 12, 351 (2021).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hayashi, T., Tanimizu, M. & Tanaka, T. Origin of negative Ce anomalies in Barberton sedimentary rocks, deduced from La–Ce and Sm–Nd isotope systematics. Precambrian Res. 135, 345–357 (2004).

    Article  ADS  CAS  Google Scholar 

  46. Bonnand, P. et al. Post-depositional REE mobility in a Paleoarchean banded iron formation revealed by La-Ce geochronology: a cautionary tale for signals of ancient oxygenation. Earth Planet Sci. Lett. 547, 116452 (2020).

    Article  CAS  Google Scholar 

  47. Li, W., Johnson, C. M. & Beard, B. L. U–Th–Pb isotope data indicate phanerozoic age for oxidation of the 3.4Ga Apex Basalt. Earth Planet Sci. Lett. 319–320, 197–206 (2012).

    Article  ADS  Google Scholar 

  48. Hoashi, M. et al. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nat. Geosci. 2, 301–306 (2009).

    Article  ADS  CAS  Google Scholar 

  49. Kendall, B., Creaser, R. A., Reinhard, C. T., Lyons, T. W. & Anbar, A. D. Transient episodes of mild environmental oxygenation and oxidative continental weathering during the late Archean. Sci. Adv. 1, e1500777 (2015).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. Tanaka, T. & Masuda, A. The La–Ce geochronometer: a new dating method. Nature 300, 515–518 (1982).

    Article  ADS  CAS  Google Scholar 

  51. Dickin, A. P. La–Ce dating of Lewisian granulites to constrain the 138La β-decay half-life. Nature 325, 337–338 (1987).

    Article  ADS  CAS  Google Scholar 

  52. Tanimizu, M. & Tanaka, T. in Origin of Elements in the Solar System, Implications of Post-1957 Observations (ed. Manuel, O.) 555–572 (Springer, 2002).

  53. Bé, M.-M. et al. Table of Radionuclides, Vol. 8 A=41 to 198 (Bureau International des Poids et Mésures, 2016).

  54. Bonnand, P., Israel, C., Boyet, M., Doucelance, R. & Auclair, D. Radiogenic and stable Ce isotope measurements by thermal ionisation mass spectrometry. J. Anal. At. Spectrom. 34, 504–516 (2019).

    Article  CAS  Google Scholar 

  55. Fralick, P. et al. Earth’s earliest known extensive, thick carbonate platform suggested by new age constraints. Earth Planet Sci. Lett. 656, 119273 (2025).

    Article  CAS  Google Scholar 

  56. Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).

    Article  ADS  PubMed  CAS  Google Scholar 

  57. Shih, P. M., Ward, L. M. & Fischer, W. W. Evolution of the 3-hydroxypropionate bicycle and recent transfer of anoxygenic photosynthesis into the Chloroflexi. Proc. Natl Acad. Sci. USA 114, 10749–10754 (2017).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  58. Rongemaille, E. et al. Rare earth elements in cold seep carbonates from the Niger delta. Chem. Geol. 286, 196–206 (2011).

    Article  ADS  CAS  Google Scholar 

  59. Cao, C., Liu, X.-M., Bataille, C. P. & Liu, C. What do Ce anomalies in marine carbonates really mean? A perspective from leaching experiments. Chem. Geol. 532, 119413 (2020).

    Article  CAS  Google Scholar 

  60. Taylor, S. R. & McLennan, S. M. The Continental Crust: Its Composition and Evolution: an Examination of the Geochemical Record Preserved in Sedimentary Rocks (Blackwell Scientific, 1985).

  61. Barrat, J.-A. et al. A new chemical separation procedure for the determination of rare earth elements and yttrium abundances in carbonates by ICP-MS. Talanta 219, 121244 (2020).

    Article  PubMed  CAS  Google Scholar 

  62. Meija, J. et al. Isotopic compositions of the elements 2013 (IUPAC Technical Report). Pure Appl. Chem. 88, 293–306 (2016).

    Article  CAS  Google Scholar 

  63. Kent, A. J. R. et al. Isotope dilution MC‐ICP‐MS rare earth element analysis of geochemical reference materials NIST SRM 610, NIST SRM 612, NIST SRM 614, BHVO‐2 G, BHVO‐2, BCR‐2 G, JB‐2, WS‐E, W‐2, AGV‐1 and AGV‐2. Geostand. Geoanal. Res. 28, 417–429 (2004).

    Article  CAS  Google Scholar 

  64. Schnabel, C., Münker, C. & Strub, E. La-Ce isotope measurements by multicollector-ICPMS. J. Anal. At. Spectrom. 32, 2360–2370 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Horstwood, M. S. A. et al. Community-derived standards for LA-ICP-MS U-(Th-)-Pb geochronology—uncertainty propagation, age interpretation, and data reporting. Geostand. Geoanal. Res. 40, 311–332 (2016).

    Article  CAS  Google Scholar 

  66. Israel, C. et al. Formation of the Ce-Nd mantle array: crustal extraction vs. recycling by subduction. Earth Planet Sci. Lett. 530, 115941 (2020).

    Article  CAS  Google Scholar 

  67. Israel, C. Retracer l’Évolution de la Terre Silicatée par le Couplage des Systèmes Lanthane-cérium et Samarium-néodyme. Doctoral thesis, Univ. Clermont-Auverge (2021).

  68. Vermeesch, P. IsoplotR: a free and open toolbox for geochronology. Geosci. Front. 9, 1479–1493 (2018).

    Article  CAS  Google Scholar 

  69. Mougeot, X. & Bé, M.-M. in Table of Radionuclides (Comments on Evaluation) (eds Bé, M. M. et al.) 655–659 (Bureau International des Poids et Mésures, 2016).

Download references

Acknowledgements

This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant no. 716515 to S.V.L. and grant no. 682778 to M.B.). We thank the owners and staff of the Bow Narrows and Woman River Camps for their hosting and logistical support, S. Kurucz, S. Timpa and R. Riding for their assistance in the field, N. Richet, Y. Lallaizon and J.-P. Oldra for their assistance with sample preparation, J.-A. Barrat, M.-L. Rouget, C. Liorzou, B. Gueguen and D. Auclair for their analytical support, the administrative staff of the Geo-Ocean Laboratory and Lakehead University for their organizational support, and J.-A. Barrat, M. Bau and K. Konhauser for stimulating discussions regarding this work.

Author information

Authors and Affiliations

Authors

Contributions

S.V.L. designed the research with contributions from P.B. and P.W.F. P.W.F., M.A., B.R., D.T.W., S.V.L., M.H., P.S. and L.A.P. performed the fieldwork and sample collection under the supervision of P.W.F. and S.V.L. M.A., D.T.W., B.R., L.A.P., M.H. and S.V.L. generated the REE datasets. L.A.P. prepared and conducted the La-Ce isotope analyses with the assistance of P.B., P.N. and M.B. L.A.P., P.B., S.V.L., M.B., M.A., D.T.W. and B.R. performed the data analysis. L.A.P., P.B. and S.V.L. wrote the manuscript with contributions from all co-authors.

Corresponding authors

Correspondence to Pierre Bonnand or Stefan V. Lalonde.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Xiao-Ming Liu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 La-Ce isotope data evaluated with respect to theoretical evolution from CHUR and as a function of Ce concentrations.

(a) 138La-138Ce isotope systematics of the combined dataset from the three studied Archean carbonate platforms, superimposed on the theoretical 138La-138Ce evolution trajectories drawn for 0.1 Ga, 1 Ga, 2 Ga, and 3 Ga from a CHUR-like initial precursor. For clarity, data points are enlarged relative to the measured analytical uncertainties. (b) Plots of measured Ce isotope compositions and (c) initial Ce isotope composition versus 1/Ce concentrations (in ppm) reveal no systematic correlations that might indicate that the reported isochrons are the result of disturbance or mixing of different Ce sources.

Extended Data Fig. 2 Probability distributions of La-Ce closure ages.

La-Ce closure age probabilities for (a) the isochron fits as reported in the main text, (b) the same isochron fits for which ages are calculated using the upper 2 s uncertainty limits of the 138La decay constants (see Methods), (c) isochron fits obtained if a student t-test expansion is applied to the analytical uncertainty determined in our study for the 138La/138Ce ratios, and (d) isochron fits for the case where 2 s uncertainties on the 138La/138Ce ratios are expanded artificially from 3.85% to 10% (see Supplementary Information). For (d), the joint probability of all three La-Ce closure ages versus time (dotted line) is provided on the second y-axis, demonstrating that even if analytical uncertainties were underestimated in this study, the joint probability that all three La-Ce isochrons may represent oxidation that occurred during the GOE is effectively excluded. The minimum depositional ages for each site as determined by zircon U-Pb geochronology are presented as vertical bars, with the width of each bar representing the 2 s uncertainty; in the case of Steep Rock, the uncertainty on the U-Pb minimum depositional age has been artificially expanded by a factor of 4 for visibility. See Supplementary Information for additional details.

Supplementary information

Supplementary Information

Supplementary Discussion.

Supplementary Tables

Supplementary Tables 1–5.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patry, L.A., Bonnand, P., Boyet, M. et al. Dating the evolution of oxygenic photosynthesis using La-Ce geochronology. Nature 642, 99–104 (2025). https://doi.org/10.1038/s41586-025-09009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09009-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing