Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unconventional solitonic high-temperature superfluorescence from perovskites

Abstract

Fast thermal dephasing limits macroscopic quantum phenomena to cryogenic conditions1,2,3,4 and hinders their use at ambient temperatures5,6. For electronic excitations in condensed media, dephasing is mediated by thermal lattice motion1,7,8. Therefore, taming the lattice influence is essential for creating collective electronic quantum states at high temperatures. Although there are occasional reports of high-Tc quantum effects across different platforms, it is unclear which lattice characteristics and electron–lattice interactions lead to macroscopically coherent electronic states in solids9. Here we studied intensity fluctuations in the macroscopic polarization during the emergence of superfluorescence in a lead halide perovskite10 and showed that spontaneously synchronized polaronic lattice oscillations accompany collective electronic dipole emission. We further developed an effective field model and theoretically confirmed that exciton–lattice interactions lead to a new electronically and structurally entangled coherent extended solitonic state beyond a critical polaron density. The analysis shows a phase transition with two processes happening in tandem: incoherent disordered polaronic lattice deformations establish an order, while macroscopic quantum coherence among excitons simultaneously emerges. Recombination of excitons in this state culminates in superfluorescence at high temperatures. Our study establishes fundamental connections between the transient superfluorescence process observed after the impulsive excitation of perovskites and general equilibrium phase transitions achieved by thermal cooling. By identifying various electron–lattice interactions in the perovskite structure and their respective role in creating collectively coherent electronic effects in solids, our work provides unprecedented insight into the design and development of new materials that exhibit high-temperature macroscopic quantum phenomena.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PL spectra and dynamics.
Fig. 2: Fluctuation analysis of SF at 78 K.
Fig. 3: Effective field theory and its experimental corroboration.
Fig. 4: Experimental and computational study of longitudinal optical phonons responsible for dephasing and Monte Carlo simulations.
Fig. 5: Double-pulse time-resolved PL experiments.

Similar content being viewed by others

Data availability

All data in the main text are provided with this paper. All other data supporting the plots in this paper are available from the corresponding author upon request. Source data are provided with this paper.

Code availability

The FHI-aims code, which was used for DFT-based calculations in this work, is a community-developed electronic structure code that can be obtained from https://fhi-aims.org. The licensing organization, MS1P e.V., is a non-profit organization focused on advancing basic science, based in Berlin, Germany. At the time of writing, co-author V.B. was the vice chair of MS1P e.V. Academic licenses for the FHI-aims code can be obtained for a voluntary license fee (that is, free of charge if requested) by any academic group. The code is distributed with full access to its source code, including all development repositories. The ELSI infrastructure software, referenced in the paper, is an open-source library to which FHI-aims links. ELSI can be obtained freely under the BSD3 open-source license at https://gitlab.com/elsi_project/elsi_interface.

References

  1. Zurek, W. H., Habib, S. & Paz, J. P. Coherent states via decoherence. Phys. Rev. Lett. 70, 1187–1190 (1993).

    Article  ADS  PubMed  CAS  Google Scholar 

  2. Blach, D. D. et al. Superradiance and exciton delocalization in perovskite quantum dot superlattices. Nano Lett. 22, 7811–7818 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  3. Sobirey, L. et al. Observation of superfluidity in a strongly correlated two-dimensional Fermi gas. Science 372, 844–846 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  4. Pitaevskii, L. & Stringari, S. Thermal vs quantum decoherence in double well trapped Bose-Einstein condensates. Phys. Rev. Lett. 87, 180402 (2001).

    Article  ADS  Google Scholar 

  5. Palma, G. M., Suominen, K.-a. & Ekert, A. Quantum computers and dissipation. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 452, 567–584 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  6. Reina, J. H., Quiroga, L. & Johnson, N. F. Decoherence of quantum registers. Phys. Rev. A 65, 032326 (2002).

    Article  ADS  Google Scholar 

  7. Hackermüller, L., Hornberger, K., Brezger, B., Zeilinger, A. & Arndt, M. Decoherence of matter waves by thermal emission of radiation. Nature 427, 711–714 (2004).

    Article  ADS  PubMed  Google Scholar 

  8. Klembt, S., Stepanov, P., Klein, T., Minguzzi, A. & Richard, M. Thermal decoherence of a nonequilibrium polariton fluid. Phys. Rev. Lett. 120, 035301 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  9. Zaanen, J. et al. Towards a complete theory of high Tc. Nat. Phys. 2, 138–143 (2006).

    Article  Google Scholar 

  10. Biliroglu, M. et al. Room-temperature superfluorescence in hybrid perovskites and its origins. Nat. Photon. 16, 324–329 (2022).

    Article  ADS  CAS  Google Scholar 

  11. Findik, G. et al. High-temperature superfluorescence in methyl ammonium lead iodide. Nat. Photon. 15, 676–680 (2021).

    Article  ADS  CAS  Google Scholar 

  12. Rainò, G. et al. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 563, 671–675 (2018).

    Article  ADS  PubMed  Google Scholar 

  13. Nasu, M., Kawamura, K., Yoshida, T., Ishihara, J. & Miyajima, K. Influences of quantum fluctuation on superfluorescent spectra observed by single-shot measurement for semiconductor quantum dots. Appl. Phys. Express 13, 062005 (2020).

    Article  ADS  CAS  Google Scholar 

  14. Haake, F., King, H., Schröder, G., Haus, J. & Glauber, R. Fluctuations in superfluorescence. Phys. Rev. A 20, 2047–2063 (1979).

    Article  ADS  CAS  Google Scholar 

  15. Okada, J., Ikeda, K. & Matsuoka, M. Streak camera investigation of superradiance development. Opt. Commun. 27, 321–323 (1978).

    Article  ADS  Google Scholar 

  16. Malcuit, M. S., Maki, J. J., Simkin, D. J. & Boyd, R. W. Transition from superfluorescence to amplified spontaneous emission. Phys. Rev. Lett. 59, 1189–1192 (1987).

    Article  ADS  PubMed  CAS  Google Scholar 

  17. Box, G. E. P., Jenkins, G. M., Reinsel, G. C. & Ljung, G. M. Time Series Analysis: Forecasting and Control (Wiley, 2015).

  18. Miyata, K. et al. Large polarons in lead halide perovskites. Sci. Adv. 3, e1701217 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  19. Nagai, M. et al. Longitudinal optical phonons modified by organic molecular cation motions in organic-inorganic hybrid perovskites. Phys. Rev. Lett. 121, 145506 (2018).

    Article  ADS  PubMed  CAS  Google Scholar 

  20. Guzelturk, B. et al. Terahertz emission from hybrid perovskites driven by ultrafast charge separation and strong electron–phonon coupling. Adv. Mater. 30, 1704737 (2018).

    Article  Google Scholar 

  21. Cinquanta, E. et al. Ultrafast THz probe of photoinduced polarons in lead-halide perovskites. Phys. Rev. Lett. 122, 166601 (2019).

    Article  ADS  PubMed  CAS  Google Scholar 

  22. He, J., Vasenko, A. S., Long, R. & Prezhdo, O. V. Halide composition controls electron–hole recombination in cesium–lead halide perovskite quantum dots: a time domain ab initio study. J. Phys. Chem. Lett. 9, 1872–1879 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Boehme, S. C. et al. Phonon-mediated and weakly size-dependent electron and hole cooling in CsPbBr3 nanocrystals revealed by atomistic simulations and ultrafast spectroscopy. Nano Lett. 20, 1819–1829 (2020).

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  24. Masharin, M. A. et al. Polaron-enhanced polariton nonlinearity in lead halide perovskites. Nano Lett. 22, 9092–9099 (2022).

    Article  ADS  PubMed  CAS  Google Scholar 

  25. Masharin, M. A. et al. Room-temperature polaron-mediated polariton nonlinearity in MAPbBr3 perovskites. ACS Photon. 10, 691–698 (2023).

    Article  CAS  Google Scholar 

  26. Menéndez‐Proupin, E., Beltrán Ríos, C. L. & Wahnón, P. Nonhydrogenic exciton spectrum in perovskite CH3NH3PbI3. Phys. Status Solidi Rapid Res. Lett. 9, 559–563 (2015).

    Article  ADS  Google Scholar 

  27. Guzelturk, B. et al. Visualization of dynamic polaronic strain fields in hybrid lead halide perovskites. Nat. Mater. 20, 618–623 (2021).

    Article  ADS  PubMed  CAS  Google Scholar 

  28. Monahan, D. M. et al. Room-temperature coherent optical phonon in 2D electronic spectra of CH3NH3PbI3 perovskite as a possible cooling bottleneck. J. Phys. Chem. Lett. 8, 3211–3215 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Gogolin, A. O. & Ioselevich, A. S. Quantum polaron. Pisma Zh. Eksp. Teor. Fiz. 53, 456–460 (1991).

    Google Scholar 

  30. Gutfreund, H. & Weger, M. Temperature dependence of the metallic conductivity of tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ). Phys. Rev. B 16, 1753–1755 (1977).

    Article  ADS  CAS  Google Scholar 

  31. Friedberg, R. & Lee, T. D. Fermion-field nontopological solitons. Phys. Rev. D 15, 1694–1711 (1977).

    Article  ADS  Google Scholar 

  32. Friedberg, R., Lee, T. & Sirlin, A. Class of scalar-field soliton solutions in three space dimensions. Phys. Rev. D 13, 2739–2761 (1976).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  33. Yazdani, N. et al. Coupling to octahedral tilts in halide perovskite nanocrystals induces phonon-mediated attractive interactions between excitons. Nat. Phys. 20, 47–53 (2024).

    Article  PubMed  CAS  Google Scholar 

  34. Blum, V. et al. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 180, 2175–2196 (2009).

    Article  ADS  CAS  Google Scholar 

  35. Lejaeghere, K. et al. Reproducibility in density functional theory calculations of solids. Science 351, aad3000 (2016).

    Article  PubMed  Google Scholar 

  36. Mølmer, K., Castin, Y. & Dalibard, J. Monte Carlo wave-function method in quantum optics. J. Opt. Soc. Am. B 10, 524–538 (1993).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

K.G., M.B. and M.T. acknowledge funding support from the Department of Energy, Office of Science under award no. DE-SC0024396 (optical spectroscopy and analytical theory development). K.G. and M.T. acknowledge discussions with M. Unsal. K.G. and M.B. acknowledge the NCSU Imaging and Kinetic Spectroscopy facility. V.V.T. acknowledges support from the CNRS Tremplin, Toptica Photonics, the Physics Department of École Polytechnique and Institut Polytechnique de Paris within the framework of a Projet de Recherche en Laboratoire, and R. Pretorian and T. Mocioi from the École Polytechnique for help with C++ programming of time-dependent parameters for Monte Carlo simulations. V.B., X.Q. and U.H. acknowledge funding support from the NSF award no. DMR-2323803, NSF award no. DMR-1729297 and NSF award no OAC-1450280 (DFT calculations). DFT calculations were carried out on resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231 using NERSC award BES-ERCAP0024246.

Author information

Authors and Affiliations

Authors

Contributions

K.G. conceived the research problem and the proposed mechanism and supervised the studies. M.B. led the PL, TRPL and pump–probe characterization and analysis with the help of D.S., M.K. and M.A.; N.P. performed double-pulse TRPL experiments; M.T. developed the effective field theory. DFT simulations were performed by X.Q., and the Delta SCF method was implemented by U.H., both supervised by V.B. Monte Carlo simulations were performed by A.G. and V.V.T.; R.S., J.C. and F.S. provided the samples. K.G., M.B. and M.T. drafted the paper with the help of A.K.S., V.B. and V.V.T. All the authors edited the paper.

Corresponding author

Correspondence to Kenan Gundogdu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Giuseppe Luca Celardo, Ivan Shelykh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biliroglu, M., Türe, M., Ghita, A. et al. Unconventional solitonic high-temperature superfluorescence from perovskites. Nature 642, 71–77 (2025). https://doi.org/10.1038/s41586-025-09030-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09030-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing