Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultrabroadband and band-selective thermal meta-emitters by machine learning

Abstract

Thermal nanophotonics enables fundamental breakthroughs across technological applications from energy technology to information processing1,2,3,4,5,6,7,8,9,10,11. From thermal emitters to thermophotovoltaics and thermal camouflage, precise spectral engineering has been bottlenecked by trial-and-error approaches. Concurrently, machine learning has demonstrated its powerful capabilities in the design of nanophotonic and meta-materials12,13,14,15,16,17,18. However, it remains a considerable challenge to develop a general design methodology for tailoring high-performance nanophotonic emitters with ultrabroadband control and precise band selectivity, as they are constrained by predefined geometries and materials, local optimization traps and traditional algorithms. Here we propose an unconventional machine learning-based paradigm that can design a multitude of ultrabroadband and band-selective thermal meta-emitters by realizing multiparameter optimization with sparse data that encompasses three-dimensional structural complexity and material diversity. Our framework enables dual design capabilities: (1) it automates the inverse design of a vast number of possible metastructure and material combinations for spectral tailoring; (2) it has an unprecedented ability to design various three-dimensional meta-emitters by applying a three-plane modelling method that transcends the limitations of traditional, flat, two-dimensional structures. We present seven proof-of-concept meta-emitters that exhibit superior optical and radiative cooling performance surpassing current state-of-the-art designs. We provide a generalizable framework for fabricating three-dimensional nanophotonic materials, which facilitates global optimization through expanded geometric freedom and dimensionality and a comprehensive materials database.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ML-based general inverse design paradigm.
Fig. 2: ML-based inverse design process and descriptors.
Fig. 3: Inverse design of different TMEs.
Fig. 4: Representative TMEs for proof-of-concept experimental validation and performance assessment.
Fig. 5: Application and energy-saving evaluation for building envelopes.

Similar content being viewed by others

Data availability

All the data and models used, generated or analysed during the current study are available from the corresponding author H.Z. upon request.

Code availability

The code used to construct the dataset and for the inverse design of these models is available at Zenodo (https://doi.org/10.5281/zenodo.15229359)51.

References

  1. Baranov, D. et al. Nanophotonic engineering of far-field thermal emitters. Nat. Mater. 18, 920–930 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Yin, X., Yang, R., Tan, G. & Fan, S. Terrestrial radiative cooling: using the cold Universe as a renewable and sustainable energy source. Science 370, 786–791 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Raman, A. P. et al. Passive radiative cooling below ambient air temperature under direct sunlight. Nature 515, 540–544 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Zhai, Y. et al. Scalable-manufactured randomized glass-polymer hybrid metamaterial for daytime radiative cooling. Science 355, 1062–1066 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Zeng, S. et al. Hierarchical-morphology metafabric for scalable passive daytime radiative cooling. Science 373, 692–696 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Lin, K. et al. Hierarchically structured passive radiative cooling ceramic with high solar reflectivity. Science 382, 691–697 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Wu, R. et al. Spectrally engineered textile for radiative cooling against urban heat islands. Science 384, 1203–1212 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Mandal, J. et al. Hierarchically porous polymer coatings for highly efficient passive daytime radiative cooling. Science 362, 315–319 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Li, T. et al. A radiative cooling structural material. Science 364, 760–763 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Li, Y. et al. Structured thermal surface for radiative camouflage. Nat. Commun. 9, 273 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Zhu, H. et al. Multispectral camouflage for infrared, visible, lasers and microwave with radiative cooling. Nat. Commun. 12, 1805 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yao, K. & Zheng, Y. Nanophotonics and Machine Learning, Vol. 241 (Springer, 2023).

  13. Ma, W. et al. Deep learning for the design of photonic structures. Nat. Photonics 15, 77–90 (2020).

    Article  ADS  Google Scholar 

  14. Zhu, C. et al. Machine learning aided design and optimization of thermal metamaterials. Chem. Rev. 124, 4258–4331 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Molesky, S. et al. Inverse design in nanophotonics. Nat. Photonics 12, 659–670 (2018).

    Article  ADS  CAS  Google Scholar 

  16. Ma, W. et al. Pushing the limits of functionality-multiplexing capability in metasurface design based on statistical machine learning. Adv. Mater. 34, 2110022 (2022).

    Article  CAS  Google Scholar 

  17. Liu, Z. et al. Generative model for the inverse design of metasurfaces. Nano Lett. 18, 6570–6576 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Chen, J. et al. Correlating metasurface spectra with a generation-elimination framework. Nat. Commun. 14, 4872 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu, X. et al. A dual-selective thermal emitter with enhanced subambient radiative cooling performance. Nat. Commun. 15, 815 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhao, X. et al. A solution-processed radiative cooling glass. Science 382, 684–691 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Li, D. et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling. Nat. Nanotechnol. 16, 153–158 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Fan, S. & Li, W. Photonics and thermodynamics concepts in radiative cooling. Nat. Photonics 16, 182–190 (2022).

    Article  ADS  CAS  Google Scholar 

  23. Tang, H. et al. Both sub-ambient and above-ambient conditions: a comprehensive approach for the efficient use of radiative cooling. Energy Environ. Sci. 17, 4498–4507 (2024).

    Article  CAS  Google Scholar 

  24. Zhao, D. et al. Radiative sky cooling: fundamental principles, materials, and applications. Appl. Phys. Rev. 6, 021306 (2019).

    Article  ADS  Google Scholar 

  25. Lan, P. et al. Hierarchical ceramic nanofibrous aerogels for universal passive radiative cooling. Adv. Funct. Mater. 34, 202410285 (2024).

    Google Scholar 

  26. Kim, M. J. et al. Deep learning-assisted inverse design of nanoparticle-embedded radiative coolers. Opt. Express 32, 16235–16247 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Guan, Q. et al. Machine learning-enabled inverse design of radiative cooling film with on-demand transmissive color. ACS Photonics 10, 715–726 (2023).

    Article  CAS  Google Scholar 

  28. Ding, Z. et al. Machine-learning-assisted design of a robust biomimetic radiative cooling metamaterial. ACS Mater. Lett. 6, 2416–2424 (2024).

    Article  CAS  Google Scholar 

  29. Seo, J. et al. Design of a broadband solar thermal absorber using a deep neural network and experimental demonstration of its performance. Sci. Rep. 9, 15028 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  30. Yu, S. et al. General deep learning framework for emissivity engineering. Light: Sci. Appl. 12, 291 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Jiang, X. et al. Implementing of infrared camouflage with thermal management based on inverse design and hierarchical metamaterial. Nanophotonics 12, 1891–1902 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xi, W. et al. Ultrahigh-efficient material informatics inverse design of thermal metamaterials for visible-infrared-compatible camouflage. Nat. Commun. 14, 4694 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, X. et al. Compatible stealth metasurface for laser and infrared with radiative thermal engineering enabled by machine learning. Adv. Funct. Mater. 33, 2212068 (2023).

    Article  CAS  Google Scholar 

  34. Sullivan, J., Mirhashemi, A. & Lee, J. Deep learning-based inverse design of microstructured materials for optical optimization and thermal radiation control. Sci. Rep. 13, 7382 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su, W. et al. Machine learning-enabled design of metasurface based near-perfect daytime radiative cooler. Sol. Energy Mater. Sol. Cells 260, 112488 (2023).

    Article  CAS  Google Scholar 

  36. Ma, W. et al. Probabilistic representation and inverse design of metamaterials based on a deep generative model with semi-supervised learning strategy. Adv. Mater. 31, 1901111 (2019).

    Article  Google Scholar 

  37. Kudyshev, Z., Kildishev, A. V., Shalaev, V. M. & Boltasseva, A. Machine-learning-assisted metasurface design for high-efficiency thermal emitter optimization. Appl. Phys. Rev. 7, 021407 (2020).

    Article  ADS  CAS  Google Scholar 

  38. Shi, N. N. et al. Keeping cool: enhanced optical reflection and radiative heat dissipation in Saharan silver ants. Science 349, 298–301 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Zhang, H. et al. Biologically inspired flexible photonic films for efficient passive radiative cooling. Proc. Natl Acad. Sci. USA 117, 14657–14666 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  40. Jordan, T. M., Partridge, J. C. & Roberts, N. W. Non-polarizing broadband multilayer reflectors in fish. Nat. Photonics 6, 759–763 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lemcoff, T. et al. Brilliant whiteness in shrimp from ultra-thin layers of birefringent nanospheres. Nat. Photonics 17, 485–493 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tsai, C. C. et al. Physical and behavioral adaptations to prevent overheating of the living wings of butterflies. Nat. Commun. 11, 551 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Choi, S. H. et al. Anderson light localization in biological nanostructures of native silk. Nat. Commun. 9, 452 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Morais, C. L. M. et al. Standardization of complex biologically derived spectrochemical datasets. Nat. Protoc. 14, 1546–1577 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Huang, M. et al. A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling. Chem. Eng. J. 442, 136239 (2022).

    Article  CAS  Google Scholar 

  46. Zhou, M. et al. Vapor condensation with daytime radiative cooling. Proc. Natl Acad. Sci. USA 118, e2019292118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yang, Z. & Zhang, J. Bioinspired radiative cooling structure with randomly stacked fibers for efficient all-day passive cooling. ACS Appl. Mater. Interfaces 13, 43387–43395 (2021).

    Article  CAS  PubMed  Google Scholar 

  48. Shi, S. et al. Scalable bacterial cellulose-based radiative cooling materials with switchable transparency for thermal management and enhanced solar energy harvesting. Small 19, 202301957 (2023).

    Article  Google Scholar 

  49. Zhao, D. et al. Subambient cooling of water: toward real-world applications of daytime radiative cooling. Joule 3, 111–123 (2019).

    Article  CAS  Google Scholar 

  50. Xu, Y. et al. Multiscale porous elastomer substrates for multifunctional on-skin electronics with passive-cooling capabilities. Proc. Natl Acad. Sci. USA 117, 205–213 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Xiao, C. Ultrabroadband and band-selective thermal meta-emitters by machine learning. Code and dataset for inverse design of thermal meta-emitters. Zenodo https://doi.org/10.5281/zenodo.15229359 (2025).

Download references

Acknowledgements

H.Z. acknowledges financial support from the National Natural Science Foundation of China (grant 52172120) and the Shanghai Science and Technology Development Funds (grant 24CL2900500). D.Z. acknowledges financial support from the Shanghai Jiao Tong University 2030 Initiative. C.-W.Q. acknowledges financial support from the Ministry of Education, Republic of Singapore (grant A-8002978-00-00), the National Research Foundation, Singapore, under its Medium Sized Centre: Singapore Hybrid-Integrated Next-Generation Electronics Centre funding programme, and the Science and Technology Project of Jiangsu Province (grant BZ2022056). Y. Zheng acknowledges support from the Cullen Trust for Higher Education Endowed Professorship in Engineering No. 4 and Temple Foundation Endowed Teaching Fellowship in Engineering No. 2. M.Y. acknowledges support from the ÅFORSK Foundation (Project 19-512). M.L. acknowledges support from the National Science Foundation of China (grant 52306103). We thank C. Zhou for helpful discussions and suggestions. We thank G. Sun for the helpful discussions on the design of the figures.

Author information

Authors and Affiliations

Authors

Contributions

H.Z. and C.X. conceived the idea. H.Z. guided the whole project. C.X. designed the ML framework and performed the finite-difference time-domain calculations. C.X. and K.Y. developed the algorithm and analysed the ML-generated results. C.X. and H.Z. designed the experiments. C.X., M.Z. and Y. Zhang fabricated and characterized the materials. C.X. and X.C. evaluated the energy saving. M.L., K.Y., Y.S., X.L., W.H., T.F., Y.Y., C. Z., Y. Zheng, D.Z. and C.-W.Q. analysed the research data. C.X. and H.Z. wrote the main parts of the manuscript. M.L., K.Y., M.Y., D.Z., Y. Zheng and C.-W.Q. revised the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yuebing Zheng, Di Zhang, Cheng-Wei Qiu or Han Zhou.

Ethics declarations

Competing interests

H.Z. and C.X. have filed intellectual property related to the algorithm. H.Z., C.X., M.Z. and Y. Zhang have filed two patent applications related to the fabrication of this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature thanks Gil Ju Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Figs. 1–51 and Tables 1–12.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, C., Liu, M., Yao, K. et al. Ultrabroadband and band-selective thermal meta-emitters by machine learning. Nature 643, 80–88 (2025). https://doi.org/10.1038/s41586-025-09102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09102-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing