Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Silicate clouds and a circumplanetary disk in the YSES-1 exoplanet system

Abstract

Young exoplanets provide an important link between understanding planet formation and atmospheric evolution1. Direct imaging spectroscopy allows us to infer the properties of young, wide-orbit, giant planets with high signal-to-noise ratio. This allows us to compare this young population with exoplanets characterized by transmission spectroscopy, which has indirectly revealed the presence of clouds2,3,4, photochemistry5 and a diversity of atmospheric compositions6,7. Direct detections have also been made for brown dwarfs8,9, but direct studies of young giant planets in the mid-infrared were not possible before James Webb Space Telescope10. With two exoplanets around a solar-type star, the YSES-1 system is an ideal laboratory for studying this early phase of exoplanet evolution. Here we report the direct observations of silicate clouds in the atmosphere of the exoplanet YSES-1 c through its 9–11 µm absorption feature, and the first circumplanetary disk silicate emission around its sibling planet, YSES-1 b. The clouds of YSES-1 c are composed of either amorphous iron-enriched pyroxene or a combination of amorphous MgSiO3 and Mg2SiO4, with particle sizes of ≤0.1 μm at 1 millibar pressure. We attribute the emission from the disk around YSES-1 b to be from submicron olivine dust grains, which may have formed through collisions of planet-forming bodies in the disk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Observed spectra of YSES-1 b and c.
Fig. 2: Semi-empirical analysis of the silicate absorption feature.
Fig. 3: YSES-1 c spectral comparison against silicate cloud models.
Fig. 4: YSES-1 b spectral comparison against forward model, retrieval and thermal disk emission model.

Similar content being viewed by others

Data availability

The data used in this paper are associated with the JWST program GO 2044 and are available from the Mikulski Archive for Space Telescopes (https://mast.stsci.edu). The dataset is available at https://doi.org/10.17909/a2vk-mh23. The data used for host star measurements are associated with the UVES/VLT Program (106.20ZM.00) and the XShooter/VLT Program (103.2008.001) and are available from the ESO Archive (https://archive.eso.org/).

Code availability

This study made use of the following software codes to analyse the data: NumPy84, astropy85, matplotlib86, SciPy87, pandas88, ForMoSA20,21, VIRGA69,70, PICASO71,72, pyMultinest41, WebbPSF38 and petitRADTRANS23. The spectral extraction script used for the MIRI LRS data is available at GitHub (https://github.com/mperrin/miri_lrs_fm).

References

  1. Currie, T. et al. Direct imaging and spectroscopy of extrasolar planets. In Proc. Protostars and Planets VII (eds Inutsuka, S. et al.) Vol. 534, 799 (Astronomical Society of the Pacific, 2023).

  2. Dyrek, A. et al. SO2, silicate clouds, but no CH4 detected in a warm Neptune. Nature 625, 51–54 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Welbanks, L. et al. A high internal heat flux and large core in a warm Neptune exoplanet. Nature 630, 836–840 (2024).

    Article  CAS  PubMed  Google Scholar 

  4. Grant, D. et al. JWST-TST DREAMS: quartz clouds in the atmosphere of WASP-17b. Astrophys. J. Lett. 956, L32 (2023).

    Article  ADS  Google Scholar 

  5. Tsai, S.-M. et al. Photochemically produced SO2 in the atmosphere of WASP-39b. Nature 617, 483–487 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sing, D. K. et al. A continuum from clear to cloudy hot-Jupiter exoplanets without primordial water depletion. Nature 529, 59–62 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Bell, T. J. et al. Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b. Nat. Astron. 8, 879–898 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Suárez, G. et al. Ultracool dwarfs observed with the Spitzer infrared spectrograph: equatorial latitudes in L dwarf atmospheres are cloudier. Astrophys. J. Lett. 954, L6 (2023).

    Article  ADS  Google Scholar 

  9. Miles, B. E. et al. The JWST Early-release Science Program for Direct Observations of Exoplanetary Systems II: a 1 to 20 μm spectrum of the planetary-mass companion VHS 1256-1257 b. Astrophys. J. Lett. 946, L6 (2023).

    Article  ADS  Google Scholar 

  10. Sun, Q. et al. A revisit of the mass-metallicity trends in transiting exoplanets. Astron. J. 167, 167 (2024).

    Article  ADS  Google Scholar 

  11. Bohn, A. J. et al. Two directly imaged, wide-orbit giant planets around the young, solar analog TYC 8998-760-1. Astrophys. J. Lett. 898, L16 (2020).

    Article  ADS  Google Scholar 

  12. Nielsen, E. L. et al. The Gemini Planet Imager Exoplanet Survey: giant planet and brown dwarf demographics from 10 to 100 au. Astron. J. 158, 13 (2019).

    Article  ADS  CAS  Google Scholar 

  13. Vigan, A. et al. The SPHERE infrared survey for exoplanets (SHINE). III. The demographics of young giant exoplanets below 300 au with SPHERE. Astron. Astrophys. 651, A72 (2021).

    Article  CAS  Google Scholar 

  14. Zhang, Y. et al. The 13CO-rich atmosphere of a young accreting super-Jupiter. Nature 595, 370–372 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Zhang, Y. et al. The ESO SupJup Survey. III. Confirmation of 13CO in YSES 1 b and atmospheric detection of YSES 1 c with CRIRES+. Astron. J. 168, 246 (2024).

    Article  ADS  CAS  Google Scholar 

  16. Cushing, M. C. et al. A Spitzer infrared spectrograph spectral sequence of M, L, and T dwarfs. Astrophys. J. 648, 614–628 (2006).

    Article  ADS  CAS  Google Scholar 

  17. Cushing, M. C. et al. Atmospheric parameters of field L and T dwarfs. Astrophys. J. 678, 1372–1395 (2008).

    Article  ADS  CAS  Google Scholar 

  18. Marley, M. S., Saumon, D. & Goldblatt, C. A patchy cloud model for the L to T dwarf transition. Astrophys. J. Lett. 723, L117 (2010).

    Article  ADS  Google Scholar 

  19. Suárez, G. & Metchev, S. Ultracool dwarfs observed with the Spitzer infrared spectrograph - II. Emergence and sedimentation of silicate clouds in L dwarfs, and analysis of the full M5-T9 field dwarf spectroscopic sample. Mon. Not. R. Astron. Soc. 513, 5701–5726 (2022).

    Article  ADS  Google Scholar 

  20. Petrus, S. et al. A new take on the low-mass brown dwarf companions on wide orbits in Upper-Scorpius. Astron. Astrophys. 633, A124 (2020).

    Article  CAS  Google Scholar 

  21. Petrus, S. et al. X-SHYNE: X-shooter spectra of young exoplanet analogs. I. A medium-resolution 0.65–2.5 μm one-shot spectrum of VHS 1256–1257 b. Astron. Astrophys. 670, L9 (2023).

    Article  ADS  CAS  Google Scholar 

  22. Calamari, E. et al. Predicting cloud conditions in substellar mass objects using ultracool dwarf companions. Astrophys. J. 963, 67 (2024).

    Article  ADS  CAS  Google Scholar 

  23. Mollière, P. et al. petitRADTRANS: a Python radiative transfer package for exoplanet characterization and retrieval. Astron. Astrophys. 627, A67 (2019).

    Article  Google Scholar 

  24. Petrus, S. et al. The JWST Early Release Science Program for Direct Observations of Exoplanetary Systems. V. Do self-consistent atmospheric models represent JWST spectra? A showcase with VHS 1256-1257 b. Astrophys. J. Lett. 966, L11 (2024).

    Article  ADS  CAS  Google Scholar 

  25. Charnay, B. et al. A self-consistent cloud model for brown dwarfs and young giant exoplanets: comparison with photometric and spectroscopic observations. Astrophys. J. 854, 172 (2018).

    Article  ADS  Google Scholar 

  26. Burrows, A. & Sharp, C. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999).

    Article  ADS  CAS  Google Scholar 

  27. Barman, T. S., Macintosh, B., Konopacky, Q. M. & Marois, C. Clouds and chemistry in the atmosphere of extrasolar planet HR8799b. Astrophys. J. 733, 65 (2011).

    Article  ADS  Google Scholar 

  28. Tremblin, P. et al. Cloudless atmospheres for young low-gravity substellar objects. Astrophys. J. 850, 46 (2017).

    Article  ADS  Google Scholar 

  29. Bowler, B. P. et al. Rotation periods, inclinations, and obliquities of cool stars hosting directly imaged substellar companions: spin-orbit misalignments are common. Astron. J. 165, 164 (2023).

    Article  ADS  Google Scholar 

  30. Stassun, K. G. et al. The revised TESS input catalog and candidate target list. Astron. J. 158, 138 (2019).

    Article  ADS  Google Scholar 

  31. Marley, M., Ackerman, A., Cuzzi, J. & Kitzmann, D. in Comparative Climatology of Terrestrial Planets(eds Mackwell, S.J. et al.) 367–391 (Univ. Arizona Press, 2013).

  32. Luna, J. L. & Morley, C. V. Empirically determining substellar cloud compositions in the era of the James Webb Space Telescope. Astrophys. J. 920, 146 (2021).

    Article  ADS  CAS  Google Scholar 

  33. Cushing, M. C., Rayner, J. T., Davis, S. P. & Vacca, W. D. FeH absorption in the near-infrared spectra of late M and L dwarfs. Astrophys. J. 582, 1066–1072 (2003).

    Article  ADS  CAS  Google Scholar 

  34. Moran, S. E., Marley, M. S. & Crossley, S. D. Neglected silicon dioxide polymorphs as clouds in substellar atmospheres. Astrophys. J. Lett. 973, L3 (2024).

  35. van Holstein, R. et al. A survey of the linear polarization of directly imaged exoplanets and brown dwarf companions with SPHERE-IRDIS. First polarimetric detections revealing disks around DH Tau B and GSC 6214-210 B. Astron. Astrophys. 647, A21 (2021).

    Article  Google Scholar 

  36. Benisty, M. et al. A circumplanetary disk around PDS70c. Astrophys. J. Lett. 916, L2 (2021).

    Article  ADS  CAS  Google Scholar 

  37. Cugno, G. et al. Mid-infrared spectrum of the disk around the forming companion GQ Lup B revealed by JWST/MIRI. Astrophys. J. Lett. 966, L21 (2024).

    Article  ADS  CAS  Google Scholar 

  38. Perrin, M. D. et al. Updated point spread function simulations for JWST with WebbPSF. In Proc. Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, 91433X (SPIE, 2014).

  39. Horne, K. An optimal extraction algorithm for CCD spectroscopy. Publ. Astron. Soc. Pac. 98, 609–617 (1986).

    Article  ADS  CAS  Google Scholar 

  40. Nasedkin, E. et al. Four-of-a-kind? Comprehensive atmospheric characterisation of the HR 8799 planets with VLTI/GRAVITY. Astron. Astrophys. 687, A298 (2024).

    Article  CAS  Google Scholar 

  41. Buchner, J. et al. X-ray spectral modelling of the AGN obscuring region in the CDFS: Bayesian model selection and catalogue. Astron. Astrophys. 564, A125 (2014).

    Article  Google Scholar 

  42. Bailer-Jones, C., Rybizki, J., Fouesneau, M., Mantelet, G. & Andrae, R. Estimating distance from parallaxes. IV. Distances to 1.33 billion stars in Gaia data release 2. Astron. J. 156, 58 (2018).

    Article  ADS  Google Scholar 

  43. Nasedkin, E., Mollière, P. & Blain, D. Atmospheric retrievals with petitRADTRANS. J. Open Source Softw. 9, 5875 (2024).

    Article  ADS  Google Scholar 

  44. Feroz, F., Hobson, M. & Bridges, M. multinest: an efficient and robust Bayesian inference tool for cosmology and particle physics. Mon. Not. R. Astron. Soc. 398, 1601–1614 (2009).

    Article  ADS  Google Scholar 

  45. Feroz, F., Hobson, M. P., Cameron, E. & Pettitt, A. N. Importance nested sampling and the MultiNest algorithm. Open J. Astrophys. 2, 10 (2019).

    Google Scholar 

  46. Skilling, J. Nested sampling. AIP Conf. Proc. 735, 395–405 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  47. Mollière, P. et al. Retrieving scattering clouds and disequilibrium chemistry in the atmosphere of HR 8799e. Astron. Astrophys. 640, A131 (2020).

    Article  Google Scholar 

  48. Zhang, Z. et al. ELemental abundances of Planets and brown dwarfs Imaged around Stars (ELPIS). I. Potential metal enrichment of the exoplanet AF Lep b and a novel retrieval approach for cloudy self-luminous atmospheres. Astron. J. 166, 198 (2023).

    Article  ADS  CAS  Google Scholar 

  49. Polyansky, O. L. et al. ExoMol molecular line lists XXX: a complete high-accuracy line list for water. Mon. Not. R. Astron. Soc. 480, 2597–2608 (2018).

    Article  ADS  CAS  Google Scholar 

  50. Rothman, L. S. et al. HITEMP, the high-temperature molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010).

    Article  ADS  CAS  Google Scholar 

  51. Guest, E. R., Tennyson, J. & Yurchenko, S. N. Predicting the rotational dependence of line broadening using machine learning. J. Mol. Spectrosc. 401, 111901 (2024).

    Article  CAS  Google Scholar 

  52. Yurchenko, S. N., Mellor, T. M., Freedman, R. S. & Tennyson, J. ExoMol line lists – XXXIX. Ro-vibrational molecular line list for CO2. Mon. Not. R. Astron. Soc. 496, 5282–5291 (2020).

    Article  ADS  CAS  Google Scholar 

  53. Coles, P. A., Yurchenko, A.-S. N. & Tennyson, J. ExoMol molecular line lists XXXV: a rotation-vibration line list for hot ammonia. Mon. Not. R. Astron. Soc. 490, 4638–4647 (2019).

    Article  ADS  CAS  Google Scholar 

  54. Barber, R. J. et al. ExoMol line lists - III. An improved hot rotation-vibration line list for HCN and HNC. Mon. Not. R. Astron. Soc. 437, 1828–1835 (2014).

    Article  ADS  CAS  Google Scholar 

  55. Azzam, A. A., Yurchenko, S. N., Tennyson, J. & Naumenko, O. V. ExoMol line lists XVI: a hot line list for H2S. Mon. Not. R. Astron. Soc. 460, 4063–4074 (2016).

    Article  ADS  CAS  Google Scholar 

  56. Sousa-Silva, C., Al-Refaie, A. F., Tennyson, J. & Yurchenko, S. N. ExoMol line lists - VII. The rotation-vibration spectrum of phosphine up to 1500K. Mon. Not. R. Astron. Soc. 446, 2337–2347 (2015).

    Article  ADS  CAS  Google Scholar 

  57. Wende, S., Reiners, A., Seifahrt, A. & Bernath, P. CRIRES spectroscopy and empirical line-by-line identification of FeH molecular absorption in an M dwarf. Astron. Astrophys. 523, A58 (2010).

    Article  ADS  Google Scholar 

  58. Allard, N. F., Spiegelman, F., Leininger, T. & Mollière, P. New study of the line profiles of sodium perturbed by H2. Astron. Astrophys. 628, A120 (2019).

    Article  ADS  CAS  Google Scholar 

  59. Allard, N. F., Spiegelman, F. & Kielkopf, J. F. K-H2 line shapes for the spectra of cool brown dwarfs. Astron. Astrophys. 589, A21 (2016).

    Article  ADS  Google Scholar 

  60. McKemmish, L. K. et al. ExoMol molecular line lists - XXXIII. The spectrum of titanium oxide. Mon. Not. R. Astron. Soc. 488, 2836–2854 (2019).

    Article  ADS  CAS  Google Scholar 

  61. McKemmish, L. K., Yurchenko, S. N. & Tennyson, J. ExoMol line lists - XVIII. The high-temperature spectrum of VO. Mon. Not. R. Astron. Soc. 463, 771–793 (2016).

    Article  ADS  CAS  Google Scholar 

  62. Asplund, M., Grevesse, N., Sauval, A. J. & Scott, P. The chemical composition of the sun. Annu. Rev. Astron. Astrophys. 47, 481–522 (2009).

    Article  ADS  CAS  Google Scholar 

  63. Ackerman, A. S. & Marley, M. S. Precipitating condensation clouds in substellar atmospheres. Astrophys. J. 556, 872–884 (2001).

    Article  ADS  CAS  Google Scholar 

  64. Jäger, C. et al. Steps toward interstellar silicate mineralogy. IV. The crystalline revolution. Astron. Astrophys. 339, 904–916 (1998).

    ADS  Google Scholar 

  65. Vos, J. M. et al. Patchy forsterite clouds in the atmospheres of two highly variable exoplanet analogs. Astrophys. J. 944, 138 (2023).

    Article  ADS  Google Scholar 

  66. Greenfield, P. & Miller, T. The Calibration Reference Data System. Astron. Comput. 16, 41–53 (2016).

    Article  ADS  Google Scholar 

  67. Fonte, S. et al. Oxygen depletion in giant planets with different formation histories. Mon. Not. R. Astron. Soc. 520, 4683–4695 (2023).

    Article  ADS  CAS  Google Scholar 

  68. Line, M. R. et al. Uniform atmospheric retrieval analysis of ultracool dwarfs. I. Characterizing benchmarks, Gl 570D and HD 3651B. Astrophys. J. 807, 183 (2015).

    Article  ADS  Google Scholar 

  69. Batalha, N., Rooney, C. & Mukherjee, S. natashabatalha/virga: Initial release (v0.0). Zenodo https://doi.org/10.5281/zenodo.3759888 (2020).

  70. Rooney, C. M., Batalha, N. E., Gao, P., Marley, M. S. & New, A. A new sedimentation model for greater cloud diversity in giant exoplanets and brown dwarfs. Astrophys. J. 925, 33 (2022).

    Article  ADS  CAS  Google Scholar 

  71. Batalha, N., Rooney, C. natashabatalha/picaso: Release 2.1. Zenodo https://doi.org/10.5281/zenodo.4206648 (2020).

  72. Batalha, N. E., Marley, M. S., Lewis, N. K. & Fortney, J. J. Exoplanet Reflected-light Spectroscopy with PICASO. Astrophys. J. 878, 70 (2019).

    Article  ADS  CAS  Google Scholar 

  73. Palik, E. D. (ed.) Handbook of Optical Constants of Solids (Academic Press, 1985).

  74. Wetzel, S. et al. Laboratory measurement of optical constants of solid SiO and application to circumstellar dust. Astron. Astrophys. 553, A92 (2013).

    Article  Google Scholar 

  75. Jäger, C., Dorschner, J., Mutschke, H., Posch, T. & Henning, T. Steps toward interstellar silicate mineralogy. VII. Spectral properties and crystallization behaviour of magnesium silicates produced by the sol-gel method. Astron. Astrophys. 408, 193–204 (2003).

    Article  ADS  Google Scholar 

  76. Mutschke, H. & Mohr, P. Far-infrared continuum absorption of forsterite and enstatite at low temperatures. Astron. Astrophys. 625, A61 (2019).

    Article  ADS  CAS  Google Scholar 

  77. Dorschner, J. et al. Steps toward interstellar silicate mineralogy. II. Study of Mg-Fe-silicate glasses of variable composition. Astron. Astrophys. 300, 503 (1995).

    ADS  CAS  Google Scholar 

  78. Zeidler, S., Mutschke, H. & Posch, T. Temperature-dependent Infrared Optical Constants of Olivine and Enstatite. Astrophys. J. 798, 125 (2015).

    Article  ADS  Google Scholar 

  79. Li, A. & Greenberg, J. M. The dust extinction, polarization and emission in the high-latitude cloud toward HD 210121. Astron. Astrophys. 339, 591–600 (1998).

    ADS  CAS  Google Scholar 

  80. Henning, T. Cosmic silicates. Annu. Rev. Astron. Astrophys. 48, 21–46 (2010).

    Article  ADS  CAS  Google Scholar 

  81. Kessler-Silacci, J. et al. c2d Spitzer IRS spectra of disks around T Tauri stars. I. Silicate emission and grain growth. Astrophys. J. 639, 275–291 (2006).

    Article  ADS  CAS  Google Scholar 

  82. Bouwman, J. et al. The formation and evolution of planetary systems: grain growth and chemical processing of dust in T Tauri systems. Astrophys. J. 683, 479–498 (2008).

    Article  ADS  CAS  Google Scholar 

  83. Chen, C. et al. Erratum: “Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks” (ApJS, 166, 351, [2006]). Astrophys. J. 177, 417 (2008).

    Article  Google Scholar 

  84. Harris, C. et al. Array programming with NumPy. Nature 585, 4357–4362 (2020).

    Article  Google Scholar 

  85. Astropy Collaboration. et al. The Astropy Project: sustaining and growing a community-oriented open-source project and the latest major release (v5.0) of the core package. Astrophys. J. 935, 167 (2022).

    Article  ADS  Google Scholar 

  86. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).

    Article  Google Scholar 

  87. Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McKinney, W. Data structures for statistical computing in Python. In Proc. Python in Science Conference 56–61 (SciPy, 2010).

Download references

Acknowledgements

S.P. is supported by the ANID FONDECYT postdoctoral program no. 3240145 and an appointment to the NASA Postdoctoral Program at the NASA–Goddard Space Flight Center, administered by Oak Ridge Associated Universities under contract with NASA. V.D. acknowledges the financial contribution from PRIN MUR 2022 (code 2022YP5ACE) funded by the European Union—NextGeneration EU. This work is based on observations made with the NASA/ESA/CSA JWST. The data were obtained from the Mikulski Archive for Space Telescopes at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, under NASA contract NAS 5-03127 for JWST. These observations are associated with program JWST-GO-02044. Support for program JWST-GO-02044 was provided by NASA through a grant from the Space Telescope Science Institute.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the paper, with some specific contributions as follows. K.K.W.H., M.P., Q.M.K., C.A.T., J.-B.R., C.V.M., E.G., K.W.-D., E.R., L.P., M.B., V.D., S.P., T.B., J.G., R.J.D.R., B.R. and G.C. aided in the development of the original proposal and made notable contributions to the overall design of the program. M.P. and K.K.W.H. generated the observing plan with input from the team. M.P. conducted the data reduction and starlight subtraction and performed the MIRI spectral extraction, and J.K. and K.K.W.H. co-led the spectral extraction of NIRSpec prism. M.R. led the cloud modelling effort, S.P. led the forward modelling effort and silicate index empirical analysis, E.N. led the retrieval effort, and C.I. led the thermal modelling with guidance from C.C.; P.P.-B. implemented the ability to fit a CPD in our forward modelling framework. M.K., Y.Z., S.E.M., W.O.B., B.R., R.J.D.R. and B.M. aided in the interpretation and made contributions to the writing of this paper. K.K.W.H., M.P., M.R., S.P., E.N. and C.I. generated figures for this paper.

Corresponding author

Correspondence to K. K. W. Hoch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Hannah Wakeford and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 PSF subtraction of NIRSpec IFU Prism data to remove host star light.

The top row shows slices of the combined NIRSpec Prism data cube at five different wavelengths. The data orientation shown here is rotated 90° relative to Fig 1. The middle row shows slices of the PSF model of the host star. The bottom row shows slices of the resultant PSF-subtracted data cube, showing clearer detections of the companions without contamination from the host star. The diffuse roughly circular illumination seen in the third row at wavelengths <= 3 microns is believed to be an optical ghost from reflection within NIRSpec; this is not subtracted by the PSF modelling but owing to its location it has no impact on the extracted spectra of the two planets.

Extended Data Fig. 2 PSF subtraction and spectral extraction of MIRI LRS data of YSES-1 b.

The top panel shows the two separate nods in blue and red for YSES-1 b illustrating the spectral traces after PSF and background subtraction. The middle panel shows spectral extractions from both traces with 3 sigma errors plotted. The black spectra is the average of the two nods. The dashed spectrum shows the MAST reduced and extracted spectra to demonstrate the systematics removed by our PSF subtraction. The bottom panel shows the SNR over wavelength of the respective extracted spectra from the middle panel, as well as the ETC calculations from the Cycle 1 proposal.

Extended Data Fig. 3 PSF subtraction and spectral extraction of MIRI LRS data of YSES-1 c.

See Extended Data Fig. 2 caption for description.

Extended Data Fig. 4 Forward model and retrieved spectrum compared to YSES-1 c spectrum.

Left panel: the pressure-temperature profile for the nearest ExoRem grid point to the best-fit parameters, and a 90% confidence region for the pressure-temperature profile as inferred by the pRT retrieval. The dashed line indicates the emission contribution function averaged across wavelength. Most of the flux is emitted between 0.01 and 0.03 bar, just above the location of the silicate cloud layer whose optical depth is indicated by the purple shading. Also shown are representative condensation curves for MgSiO3, Mg2SiO4 and Fe, all of which are expected to condense deeper in the atmosphere than what is found by the retrieval. Right panel: the best-fit ExoRem forward model and the maximum-likelihood model from the pRT retrieval are compared to the observed spectrum of YSES-1 c.

Extended Data Fig. 5 Posterior parameter distributions for YSES-1 c as inferred from the pRT retrieval.

Not shown are the parameters for the PT profile, which is shown in Extended Data Fig. 4. The units of the chemical abundances are in log mass fraction.

Extended Data Fig. 6 Cloud composition, mean particle radius, cloud base pressure, and cloud particle density fits.

Shown in panel 1 are different silicate species of crystalline Mg2SiO4, crystalline MgSiO3 (averaged over all temperatures), and crystalline MgSiO3 at 928 K; panel 2 shows different particle radii fits; panel 3 shows different cloud base pressures; and panel 4 shows different particle densities, all against YSES-1 c.

Extended Data Table 1 Overview of JWST observations
Extended Data Table 2 Priors for ExoREM forward model fitting and petitRADTRANS retrieval fitting
Extended Data Table 3 Summary of forward modelling, retrieval fitting, and thermal modelling

Supplementary information

Supplementary Information

This file contains Supplementary Methods, Supplementary Fig. 1 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoch, K.K.W., Rowland, M., Petrus, S. et al. Silicate clouds and a circumplanetary disk in the YSES-1 exoplanet system. Nature 643, 938–942 (2025). https://doi.org/10.1038/s41586-025-09174-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09174-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing