Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dynamic kinetic resolution of phosphines with chiral supporting electrolytes

Abstract

The synthesis of enantiopure compounds is a central focus in organic chemistry owing to the prevalence of chiral centres in biological systems and the impact of homochirality on molecular properties. With growing recognition of electrochemistry as a powerful tool to improve the scope and sustainability of organic synthesis1, increasing efforts have been directed towards developing asymmetric electrocatalytic reactions to access challenging chiral molecules2,3,4. However, many useful electrochemical reactions rely on direct electrolysis without a catalyst, making them inherently difficult to render enantioselective. Supporting electrolytes are integral to electrochemical systems and, in addition to ensuring sufficient solution conductivity, they can influence the rate and selectivity of electrochemical transformations5. Chiral supporting electrolytes can mediate asymmetric reactions via direct electrolysis, but their use in organic electrosynthesis remains largely unexplored6,7. Here we describe the use of substoichiometric chiral phosphate salts as supporting electrolytes to facilitate the oxidation of racemic trivalent phosphines to afford enantioenriched phosphine oxides. Our approach relies on a dynamic-kinetic-resolution strategy that exploits the rapid pyramidal inversion of an anodically generated phosphoniumyl radical cation8, while a high concentration of chiral phosphate at the electrode–electrolyte interface9,10 enhances enantioselective control during rate-limiting nucleophilic addition. Our results highlight the promise of chiral supporting electrolytes for promoting radical-ion-mediated asymmetric transformations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric direct electrolysis enabled by a chiral supporting electrolyte and DKR of trivalent phosphines via pyramidal inversion of a phosphoniumyl radical cation.
Fig. 2: Optimization and scope for substrates with a directing group.
Fig. 3: Optimization and scope for substrates without a directing group.
Fig. 4: Proposed mechanism and computational energy diagram.
Fig. 5: Mechanistic investigation of electrochemical phosphine oxidation mediated by a chiral supporting electrolyte.

Similar content being viewed by others

Data availability

All data supporting the findings of this work are available in the paper and its Supplementary Information. Full X-ray structural data are available free of charge from the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers 2385247 and 2385248.

References

  1. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lin, Q., Li, L. & Luo, S. Asymmetric electrochemical catalysis. Chem. Eur. J. 25, 10033–10044 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. Jiao, K.-J. et al. The applications of electrochemical synthesis in asymmetric catalysis. Chem Catal. 2, 3019–3047 (2022).

    CAS  Google Scholar 

  4. Rein, J., Zacate, S. B., Mao, K. & Lin, S. A tutorial on asymmetric electrocatalysis. Chem. Soc. Rev. 52, 8106–8125 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Moeller, K. Anodic olefin coupling reactions: a mechanism driven approach to the development of new synthetic tools. Electrochem. Soc. Interface 25, 53–59 (2016).

    Article  CAS  Google Scholar 

  6. Maekawa, H., Itoh, K., Goda, S. & Nishiguchi, I. Enantioselective electrochemical oxidation of enol acetates using a chiral supporting electrolyte. Chirality 15, 95–100 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Yadav, A. K., Manju, M. & Chhinpa, P. R. Enantioselective cathodic reduction of some prochiral ketones in the presence of (−)-N,N′-dimethylquininium tetrafluoroborate at mercury cathode. Tetrahedron Asymmetry 14, 1079–1081 (2003).

    Article  CAS  Google Scholar 

  8. Reichl, K. D., Ess, D. H. & Radosevich, A. T. Catalyzing pyramidal inversion: configurational lability of P-stereogenic phosphines via single electron oxidation. J. Am. Chem. Soc. 135, 9354–9357 (2013).

    Article  CAS  PubMed  Google Scholar 

  9. Bard, A. & Faulkner, L. R. (eds) in Electrochemical Methods Fundamentals and Applications 534–579 (John Wiley, 2001).

  10. Feng, G., Huang, J., Sumpter, B. G., Meunier, V. & Qiao, R. Structure and dynamics of electrical double layers in organic electrolytes. Phys. Chem. Chem. Phys. 12, 5468–5479 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. von Münchow, T., Dana, S., Xu, Y., Yuan, B. & Ackermann, L. Enantioselective electrochemical cobalt-catalyzed aryl C–H activation reactions. Science 379, 1036–1042 (2023).

    Article  Google Scholar 

  12. Song, L. et al. Dual electrocatalysis enables enantioselective hydrocyanation of conjugated alkenes. Nat. Chem. 12, 747–754 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Wang, Z.-H. et al. TEMPO-enabled electrochemical enantioselective oxidative coupling of secondary acyclic amines with ketones. J. Am. Chem. Soc. 143, 15599–15605 (2021).

    Article  CAS  PubMed  Google Scholar 

  14. Naulin, E. et al. Stereoselective synthesis of fissoldhimine alkaloid analogues via sequential electrooxidation and heterodimerization of ureas. Chem. Commun. 60, 11560–11563 (2024).

    Article  CAS  Google Scholar 

  15. Komori, T. & Nonaka, T. Stereochemical studies of the electrolytic reactions of organic compounds. 25. Electroorganic reactions on organic electrodes. 6. Electrochemical asymmetric oxidation of unsymmetric sulfides to the corresponding chiral sulfoxides on poly(amino acid)-coated electrodes. J. Am. Chem. Soc. 106, 2656–2659 (1984).

    Article  CAS  Google Scholar 

  16. Reidell, A. C., Pazder, K. E., LeBarron, C. T., Stewart, S. A. & Hosseini, S. Modified working electrodes for organic electrosynthesis. ACS Org. Inorg. Au 4, 579–603 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schmittel, M. & Burghart, A. Understanding reactivity patterns of radical cations. Angew. Chem. Int. Ed. 36, 2550–2589 (1997).

    Article  Google Scholar 

  18. Gentry, E. C., Rono, L. J., Hale, M. E., Matsuura, R. & Knowles, R. R. Enantioselective synthesis of pyrroloindolines via noncovalent stabilization of indole radical cations and applications to the synthesis of alkaloid natural products. J. Am. Chem. Soc. 140, 3394–3402 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Das, S. et al. Asymmetric counteranion-directed photoredox catalysis. Science 379, 494–499 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Ohmura, S. et al. Highly enantioselective radical cation [2 + 2] and [4 + 2] cycloadditions by chiral iron(III) photoredox catalysis. J. Am. Chem. Soc. 145, 15054–15060 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Xu, Z. et al. Asymmetric counteranion‐directed electrocatalysis for enantioselective control of radical cation. Angew. Chem. Int. Ed. 64, e202413601 (2024).

    Article  Google Scholar 

  22. Guo, H., Fan, Y. C., Sun, Z., Wu, Y. & Kwon, O. Phosphine organocatalysis. Chem. Rev. 118, 10049–10293 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Imamoto, T. P-stereogenic phosphorus ligands in asymmetric catalysis. Chem. Rev. 124, 8657–8739 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Dutartre, M., Bayardon, J. & Jugé, S. Applications and stereoselective syntheses of P-chirogenic phosphorus compounds. Chem. Soc. Rev. 45, 5771–5794 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Montchamp, J.-L. Phosphorus Chemistry I: Asymmetric Synthesis and Bioactive Compounds (Springer, 2015).

  26. Bergin, E. et al. Synthesis of P-stereogenic phosphorus compounds. Asymmetric oxidation of phosphines under Appel conditions. J. Am. Chem. Soc. 129, 9566–9567 (2007).

    Article  CAS  PubMed  Google Scholar 

  27. Rajendran, K. V., Kennedy, L. & Gilheany, D. G. P-stereogenic phosphorus compounds: effect of aryl substituents on the oxidation of arylmethylphenylphosphanes under asymmetric Appel conditions. Eur. J. Org. Chem. 2010, 5642–5649 (2010).

    Article  Google Scholar 

  28. Perlikowska, W., Gouygou, M., Daran, J., Balavoineb, G. & Mikołajczyka, M. Kinetic resolution of P-chiral tertiary phosphines and chlorophosphines: a new approach to optically active phosphoryl and thiophosphoryl compounds. Tetrahedron Lett. 42, 7841–7845 (2001).

    Article  CAS  Google Scholar 

  29. Rusmore, T. A., Behlen, M. J., John, A., Glatzhofer, D. T. & Nicholas, K. M. Oxidative kinetic resolution of P-chiral phosphines catalyzed by chiral (salen)dioxomolybdenum complexes. Mol. Catal. 513, 111776 (2021).

    CAS  Google Scholar 

  30. Jennings, E. V., Nikitin, K., Ortin, Y. & Gilheany, D. G. Degenerate nucleophilic substitution in phosphonium salts. J. Am. Chem. Soc. 136, 16217–16226 (2014).

    Article  CAS  PubMed  Google Scholar 

  31. Ohmori, H., Nakai, S., Sekiguchi, M. & Masui, M. Anodic oxidation of organophosphorus compounds. III. Anodic alkoxylation and thioalkoxylation of triphenylphosphine. Chem. Pharm. Bull. 28, 910–915 (1980).

    Article  CAS  Google Scholar 

  32. Maeda, H., Koide, T., Maki, T. & Ohmori, H. Electrochemical preparation and some reactions of alkoxy triphenylphosphonium ions. Chem. Pharm. Bull. 43, 1076–1080 (1995).

    Article  CAS  Google Scholar 

  33. Maeda, H., Maki, T., Eguchi, K., Koide, T. & Ohmori, H. One-step deoxygenation of alcohols into alkanes by a ‘double electrolysis’ in the presence of a phosphine. Tetrahedron Lett. 35, 4129–4132 (1994).

    Article  CAS  Google Scholar 

  34. Sakai, K., Nagai, N., Mizuki, Y., Masui, M. & Ohmori, H. Reaction of electrochemically generated triphenylphosphine radical cation with amides and ureas. Chem. Pharm. Bull. 33, 373–376 (1985).

    Article  Google Scholar 

  35. Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    Article  CAS  Google Scholar 

  36. Imamoto, T., Kikuchi, S. I., Miura, T. & Wada, Y. Stereospecific reduction of phosphine oxides to phosphines by the use of a methylation reagent and lithium aluminum hydride. Org. Lett. 3, 87–90 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. Rajendran, K. V. & Gilheany, D. G. Simple unprecedented conversion of phosphine oxides and sulfides to phosphine boranes using sodium borohydride. Chem. Commun. 48, 817–819 (2012).

    Article  CAS  Google Scholar 

  38. Wang, T., Han, X., Zhong, F., Yao, W. & Lu, Y. Amino acid-derived bifunctional phosphines for enantioselective transformations. Acc. Chem. Res. 49, 1369–1378 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Greenfield, S. J., Agarkov, A. & Gilbertson, S. R. High asymmetric induction with β-turn-derived palladium phosphine complexes. Org. Lett. 5, 3069–3072 (2003).

    Article  CAS  PubMed  Google Scholar 

  40. Mino, T., Kashiharab, K. & Yamashita, M. New chiral phosphine–amide ligands in palladium-catalysed asymmetric allylic alkylations. Tetrahedron Asymmetry 12, 287–291 (2001).

    Article  CAS  Google Scholar 

  41. Kütt, A. Strengths of acids in acetonitrile. Eur. J. Org. Chem. 2021, 1407–1419 (2021).

    Article  Google Scholar 

  42. Warner, C. J. A., Reeder, A. T. & Jones, S. P-chiral phosphine oxide catalysed reduction of prochiral ketimines using trichlorosilane. Tetrahedron Asymmetry 27, 136–141 (2016).

    Article  CAS  Google Scholar 

  43. Laudadio, G. et al. Sulfonamide synthesis through electrochemical oxidative coupling of amines and thiols. J. Am. Chem. Soc. 141, 5664–5668 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rajendran, K. V. & Gilheany, D. G. Identification of a key intermediate in the asymmetric Appel process: one pot stereoselective synthesis of P-stereogenic phosphines and phosphine boranes from racemic phosphine oxides. Chem. Commun. 48, 10040–10042 (2012).

    Article  CAS  Google Scholar 

  45. Guo, X., Price, N. G. & Zhu, Q. Electrochemical cyanation of alcohols enabled by an iodide-mediated phosphine P(V/III) redox couple. Org. Lett. 26, 7347–7351 (2024).

    Article  CAS  PubMed  Google Scholar 

  46. Zhang, J., Mück-Lichtenfeld, C. & Studer, A. Photocatalytic phosphine-mediated water activation for radical hydrogenation. Nature 619, 506–513 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xie, Z.-Z. et al. Photoredox-catalyzed selective α-scission of PR3–OH radicals to access hydroalkylation of alkenes. Org. Lett. 25, 9014–9019 (2023).

    Article  CAS  PubMed  Google Scholar 

  48. Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 91, 165–195 (1991).

    Article  CAS  Google Scholar 

  49. Creary, X., Mehrsheikh-Mohammadi, M. E. & Mcdonald, S. Methylenecyclopropane rearrangement as a probe for free radical substituent effects. σ· values for commonly encountered conjugating and organometallic groups. J. Org. Chem. 52, 3254–3263 (1987).

    Article  CAS  Google Scholar 

  50. Sharma, S. Electro-organic reactions: direct and indirect electrolysis. Orient. J. Chem. 40, 321–332 (2024).

    Article  CAS  Google Scholar 

  51. Lu, T. & Chen, Q. Independent gradient model based on Hirshfeld partition: a new method for visual study of interactions in chemical systems. J. Comput. Chem. 43, 539–555 (2022).

    Article  CAS  PubMed  Google Scholar 

  52. Lu, T. & Chen, F. Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012).

    Article  PubMed  Google Scholar 

  53. Lu, T. A comprehensive electron wavefunction analysis toolbox for chemists, Multiwfn. J. Chem. Phys. 161, 082503 (2024).

    Article  CAS  PubMed  Google Scholar 

  54. Pracht, P. et al. CREST—a program for the exploration of low-energy molecular chemical space. J. Chem. Phys. 160, 114110 (2024).

    Article  CAS  PubMed  Google Scholar 

  55. Lu, T. Molclus program, version 1.12 (Beijing Kein Research Center for Natural Sciences, 2023); http://www.keinsci.com/research/molclus.html.

Download references

Acknowledgements

This work was supported by NSF Center for Synthetic Organic Electrochemistry (CHE-2002158) and Bristol Myers Squibb Graduate Fellowship (K.M.). S.L. is grateful for a Camille Dreyfus Teacher-Scholar Award. We thank L. Novaes for initial contribution to the development of the thioether oxidation; I. Crooker for assistance in preparing supporting electrolytes and substrates; S. MacMillan for collecting and elucidating X-ray crystallography data; I. Keresztes for discussion on NMR structural analysis; A. L. Lai (funded by NIH R24GM146107 and R35GM148272) for help with electron paramagnetic resonance experiments; B. Gorski for reproducing the reaction; D. Toste for discussions on chiral phosphoric acid synthesis and catalysis; G. Laudadio for discussions on flow electrochemistry; Y. Yang for discussions on the electrode–electrolyte interface and electrical double layer; D. B. Collum for providing access to his computational resources; K. R. Meihaus for manuscript editing; and W.-C. C. Lee for figure editing.

Author information

Authors and Affiliations

Authors

Contributions

S.L. and Y.Q. supervised the project. S.L., C.L. and K.M. conceived of the project. C.L., K.M. and C.M. performed synthetic experiments. K.M. and C.L. performed experimental mechanistic studies. Y.W. performed DFT calculations. C.G. performed molecular dynamics simulations. J.M.P. performed flow cell experiments. N.I.C. performed chemical space analysis. The paper was written by K.M., C.L., Y.W. and S.L., edited by C.G. and Y.Q., and approved by all authors.

Corresponding author

Correspondence to Song Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, K., Liu, C., Wang, Y. et al. Dynamic kinetic resolution of phosphines with chiral supporting electrolytes. Nature 643, 1288–1296 (2025). https://doi.org/10.1038/s41586-025-09238-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09238-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing