Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metalasers with arbitrarily shaped wavefront

Abstract

Integrated nanolasers have been explored for decades owing to their important role in many applications, ranging from optical information processing and communications to medical treatments1,2,3,4,5,6. Although polarization, orbital angular momentum and directivity of nanolasers have been successfully manipulated7,8,9, neither their laser wavefront nor radiation characteristics can be customized at will. More optical elements are often required to further modify the laser characteristics, making the lasing system bulky and restricted by inevitable speckle noise. Here we suggest and realize a new type of laser, a metalaser, by using the interplay between local and nonlocal responses of dielectric resonant metasurfaces. The lasing mode is confined by nonlocal interaction between meta-atoms of a planar structure and the beam wavefront is precisely shaped by locally varying dipole momenta. Consequently, the metalaser emission can directly have any desired profile, including focal spots, focal lines, vector beams, vortex beams and even holograms. Notably, the scattered waves of the metalaser do not undergo resonant amplification like laser modes, being orders of magnitude weaker. As a consequence, the speckle noise becomes negligibly small in our metalaser holograms, providing a viable solution to the speckle noise problem of conventional laser holograms. This finding enriches our understanding of lasers and promotes their performance for various optical and photonic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept of metalasers.
Fig. 2: Experimental demonstration of a metalaser.
Fig. 3: Metalasers with controllable emission profiles.
Fig. 4: High-quality speckle-free laser holograms.

Similar content being viewed by others

Data availability

All key data supporting the findings of this study are included in the main article and its Supplementary Information. Further datasets are available from the corresponding author.

Code availability

The codes and simulation files that support the figures and data analysis of this article are available from the corresponding authors.

References

  1. Chang-Hasnain, C. J. & Yang, W. High-contrast gratings for integrated optoelectronics. Adv. Opt. Photonics 4, 379–440 (2012).

    Article  ADS  Google Scholar 

  2. Wen, D. & Crozier, K. B. Semiconductor lasers with integrated metasurfaces for direct output beam modulation enabled by innovative fabrication methods. Nanophotonics 12, 1443–1457 (2023).

    Article  CAS  Google Scholar 

  3. Mateus, C., Huang, M., Deng, Y., Neureuther, A. R. & Chang-Hasnain, C. J. Ultrabroadband mirror using low-index cladded subwavelength grating. IEEE Photonics Technol. Lett. 16, 518–520 (2004).

    Article  ADS  Google Scholar 

  4. Huang, M., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nat. Photon. 1, 119–122 (2007).

    Article  ADS  CAS  Google Scholar 

  5. Piccardo, M. et al. Vortex laser arrays with topological charge control and self-healing of defects. Nat. Photon. 16, 359–365 (2022).

    Article  ADS  CAS  Google Scholar 

  6. Tradonsky, C. et al. High-resolution digital spatial control of a highly multimode laser. Optica 8, 880–884 (2021).

    Article  ADS  Google Scholar 

  7. Yu, N. et al. Small-divergence semiconductor lasers by plasmonic collimation. Nat. Photon. 2, 564–570 (2008).

    Article  CAS  Google Scholar 

  8. Xie, Y. Y. et al. Metasurface-integrated vertical cavity surface-emitting lasers for programmable directional lasing emissions. Nat. Nanotechnol. 15, 125–130 (2020).

    Article  ADS  CAS  Google Scholar 

  9. Soor, H. et al. High-purity orbital angular momentum states from a visible metasurface laser. Nat. Photon. 14, 498–503 (2020).

    Article  ADS  Google Scholar 

  10. Hall, R. N., Fenner, G. E., Kingsley, J. D., Soltys, T. J. & Carlson, R. O. Coherent light emission from GaAs junctions. Phys. Rev. Lett. 9, 366–368 (1962).

    Article  ADS  CAS  Google Scholar 

  11. Nathan, M. I., Dumke, W. P., Burns, G., Dill, F. H. & Lasher, G. Stimulated emission of radiation from GaAs p-n junctions. Appl. Phys. Lett. 1, 62–64 (1962).

    Article  ADS  CAS  Google Scholar 

  12. Soda, H., Iga, K., Kitahara, C. & Suematsu, Y. GaInAsP/InP surface emitting injection lasers. Jpn. J. Appl. Phys. 18, 2329–2330 (1979).

    Article  ADS  CAS  Google Scholar 

  13. Francis, D., Yuen, W., Chen, H. L., Li, G. & Chang-Hasnain, C. Monolithic 2D-VCSEL array with >2 W CW and >5 W pulsed output power. Electron. Lett. 34, 2132–2133 (1998).

    Article  ADS  Google Scholar 

  14. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  CAS  Google Scholar 

  15. Wang, Z., Kapsalidis, F., Wang, R., Beck, M. & Faist, J. Ultra-low threshold lasing through phase front engineering via a metallic circular aperture. Nat. Commun. 13, 230 (2022).

    Article  ADS  CAS  Google Scholar 

  16. Lau, E. K. et al. Strong optical injection-locked semiconductor lasers demonstrating >100-GHz resonance frequencies and 80-GHz intrinsic bandwidths. Opt. Express 16, 6609–6618 (2008).

    Article  ADS  Google Scholar 

  17. Kroner, A., Kardosh, I., Rinaldi, F. & Michalzik, R. Towards VCSEL-based integrated optical traps for biomedical applications. Electron. Lett. 42, 93–94 (2006).

    Article  ADS  Google Scholar 

  18. Strzelecka, E. M., Robinson, G. D., Coldren, L. A. & Hu, E. L. Fabrication of refractive microlenses in semiconductors by mask shape transfer in reactive ion etching. Microelectron. Eng. 35, 385–388 (1997).

    Article  CAS  Google Scholar 

  19. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  CAS  Google Scholar 

  20. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  CAS  Google Scholar 

  21. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  ADS  CAS  Google Scholar 

  22. Devlin, R. C., Ambrosio, A., Rubin, N. A., Mueller, J. P. B. & Capasso, F. Arbitrary spin-to-orbital angular momentum conversion of light. Science 358, 896–901 (2017).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Zheng, G. et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol. 10, 308–312 (2015).

    Article  ADS  CAS  Google Scholar 

  24. Spägele, C. et al. Multifunctional wide-angle optics and lasing based on supercell metasurfaces. Nat. Commun. 12, 3787 (2021).

    Article  ADS  Google Scholar 

  25. Chen, Y. et al. Compact spin-valley-locked perovskite emission. Nat. Mater. 22, 1065–1070 (2023).

    Article  ADS  CAS  Google Scholar 

  26. Stellinga, D. et al. An organic vortex laser. ACS Nano 12, 2389–2394 (2018).

    Article  CAS  Google Scholar 

  27. Gao, X. et al. Dirac-vortex topological cavities. Nat. Nanotechnol. 15, 1012–1018 (2020).

    Article  ADS  CAS  Google Scholar 

  28. Miao, P. et al. Orbital angular momentum microlaser. Science 353, 464–467 (2016).

    Article  ADS  CAS  Google Scholar 

  29. Zhang, Z. et al. Spin–orbit microlaser emitting in a four-dimensional Hilbert space. Nature 612, 246–251 (2022).

    Article  ADS  CAS  Google Scholar 

  30. Zhang, X., Liu, Y., Han, J., Kivshar, Y. & Song, Q. Chiral emission from resonant metasurfaces. Science 377, 1215–1218 (2022).

    Article  ADS  CAS  Google Scholar 

  31. Qiao, X. et al. Higher-dimensional supersymmetric microlaser arrays. Science 372, 403–408 (2021).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  32. Eliezer, Y. et al. Suppressing meta-holographic artifacts by laser coherence tuning. Light Sci. Appl. 10, 104 (2021).

    Article  ADS  CAS  Google Scholar 

  33. Balthasar Mueller, J. P., Rubin, N. A., Devlin, R. C., Groever, B. & Capasso, F. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett. 118, 113901 (2017).

    Article  ADS  CAS  Google Scholar 

  34. Choi, E. et al. 360° structured light with learned metasurfaces. Nat. Photon. 18, 848–855 (2024).

    Article  CAS  Google Scholar 

  35. Kwon, H., Sounas, D., Cordaro, A., Polman, A. & Alù, A. Nonlocal metasurfaces for optical signal processing. Phys. Rev. Lett. 121, 173004 (2018).

    Article  ADS  CAS  Google Scholar 

  36. Overvig, A. C., Malek, S. C. & Yu, N. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett. 125, 017402 (2020).

    Article  ADS  CAS  Google Scholar 

  37. Malek, S. C., Overvig, A. C., Alù, A. & Yu, N. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl. 11, 246 (2022).

    Article  ADS  CAS  Google Scholar 

  38. Yao, J. et al. Nonlocal meta-lens with Huygens’ bound states in the continuum. Nat. Commun. 15, 6543 (2024).

    Article  CAS  Google Scholar 

  39. Hsu, C. W. et al. Observation of trapped light within the radiation continuum. Nature 499, 188–191 (2013).

    Article  ADS  CAS  Google Scholar 

  40. Koshelev, K., Lepeshov, S., Liu, M., Bogdanov, A. & Kivshar, Y. Asymmetric metasurfaces with high-Q resonances governed by bound states in the continuum. Phys. Rev. Lett. 121, 193903 (2018).

    Article  ADS  Google Scholar 

  41. Zhen, B., Hsu, C. W., Lu, L., Stone, A. D. & Soljačić, M. Topological nature of optical bound states in the continuum. Phys. Rev. Lett. 113, 257401 (2014).

    Article  ADS  Google Scholar 

  42. Huang, C. et al. Ultrafast control of vortex microlasers. Science 367, 1018–1021 (2020).

    Article  ADS  CAS  Google Scholar 

  43. Wang, B. et al. Generating optical vortex beams by momentum-space polarization vortices centred at bound states in the continuum. Nat. Photon. 14, 623–628 (2020).

    Article  ADS  CAS  Google Scholar 

  44. Liang, Y., Tsai, D. P. & Kivshar, Y. From local to nonlocal high-Q plasmonic metasurfaces. Phys. Rev. Lett. 133, 053801 (2024).

    Article  CAS  Google Scholar 

  45. Jain, A., Moitra, P., Koschny, T., Valentine, J. & Soukoulis, C. M. Electric and magnetic response in dielectric dark states for low loss subwavelength optical meta atoms. Adv. Opt. Mater. 3, 1431–1438 (2015).

    Article  CAS  Google Scholar 

  46. Berry, M. A geometric-phase timeline. Opt. Photonics News. 35, 42–49 (2024).

    Article  Google Scholar 

  47. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).

    Article  ADS  Google Scholar 

  48. Qu, G. et al. Reprogrammable meta-hologram for optical encryption. Nat. Commun. 11, 5484 (2020).

    Article  ADS  CAS  Google Scholar 

  49. Zeng, Y. et al. Electrically pumped topological laser with valley edge modes. Nature 578, 246–250 (2020).

    Article  ADS  CAS  Google Scholar 

  50. Luan, H. Y., Ouyang, Y. H., Zhao, Z. W., Mao, W. Z. & Ma, R. M. Reconfigurable moiré nanolaser arrays with phase synchronization. Nature 624, 282–288 (2023).

    Article  ADS  CAS  Google Scholar 

  51. Cao, H. et al. Complex lasers with controllable coherence. Nat. Rev. Phys. 1, 156–168 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (grant no. 2024YFB2809200); National Natural Science Foundation of China (grant nos. 12025402, 62125501, 62335005, 12334016, 12261131500, 92250302 and 12304414); Shenzhen Fundamental Research Projects (grant nos. JCYJ20241202123729038, JCYJ20241202123719025 and JCYJ20220818102218040); Fundamental Research Funds for the Central Universities (grant nos. 2022FRRK030004, 2023FRFK03049 and 2022FRFK01013); New Cornerstone Science Foundation through the XPLORER PRIZE; Natural Science Foundation of Guangdong Province (2024B1515040013); Australian Research Council (grant no. DP210101292); International Technology Center Indo-Pacific (ITC IPAC) through the Army Research Office (grant no. FA520923C0023).

Author information

Authors and Affiliations

Authors

Contributions

Q.S., Y.K., S.Y. and S.X. conceived the idea and supervised the research. Y. Zeng and G.Q. carried out the design. Y. Zeng, X.S., C.Z. and Y. Zhang fabricated the samples. Y. Zeng, H.D. and H.L. performed experimental measurements. Q.S. and Y. Zeng analysed the results. All of the authors discussed the contents and prepared the manuscript.

Corresponding authors

Correspondence to Shumin Xiao, Shaohua Yu, Yuri Kivshar or Qinghai Song.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Sha, X., Zhang, C. et al. Metalasers with arbitrarily shaped wavefront. Nature 643, 1240–1245 (2025). https://doi.org/10.1038/s41586-025-09275-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09275-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing