Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer

Abstract

Transition metal–hydrides have been widely exploited in catalysis for the hydrofunctionalization of unsaturated moieties, including carbonyls, alkenes and alkynes1. To complement heterolytic metal–hydride bond cleavage, metal–hydride hydrogen atom transfer (MHAT) has recently gained attention, as a promising strategy for radical hydrofunctionalization of unactivated alkenes2, thus enabling late-stage diversification of complex molecules3,4. However, owing to the weak interactions between the prochiral organic radical and the enantiopure catalyst5, asymmetric MHAT6 remains challenging. Here we show that cytochrome P450 enzymes (CYPs) can be repurposed to catalyse asymmetric MHAT, a new-to-nature reaction. Directed evolution of P450BM3 yielded a triple mutant that catalyses MHAT radical cyclization of unactivated alkenes, producing diverse cyclic compounds—including pyrrolidines and piperidines—with up to 98:2 enantiomeric ratio under aerobic whole-cell conditions. Apart from electron-deficient alkenes, alternative radical acceptors—including hydrazones, oximes and nitriles—were converted by repurposed P450BM3 to enantioenriched cyclization products. Mechanistic investigations support an MHAT mechanism proceeding by homolytic cleavage of a fleeting iron(III)–hydride species2,6. Starting from CYP119, directed evolution afforded a stereocomplementary MHATase, highlighting the potential of repurposed CYPs for MHAT biocatalysis. Our study highlights the prospect of integrating homolytic metal–hydride reactivity into metalloenzymes, thus expanding the scope of asymmetric radical biocatalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Catalytic reactions that involve metal–hydrides.
Fig. 2: Discovery and directed evolution of the MHATase catalysing the conversion of diene 1 to enantioenriched pyrrolidine 2.
Fig. 3: Substrate scope for the whole-cell asymmetric radical cyclization by a Giese reaction catalysed by evolved P450BM3.
Fig. 4: Substrate scope for the MHATase-catalysed asymmetric radical cyclization using alternative radical acceptors.
Fig. 5: Mechanistic studies on the radical cyclization catalysed by P450BM3_LQQ with PhSiH3.
Fig. 6: Scalability and access to the opposite pyrrolidine enantiomers with MHATase.

Similar content being viewed by others

Data availability

All data that support the findings in this study are available in this paper and the Supplementary InformationSource data are provided with this paper.

References

  1. Maurizio Peruzzini, R. P. Recent Advances in Hydride Chemistry 1st edn (Elsevier Science, 2002).

  2. Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu, J. & Ma, Z. Metal-hydride hydrogen atom transfer (MHAT) reactions in natural product synthesis. Org. Chem. Front. 8, 7050–7076 (2021).

    Article  ADS  CAS  Google Scholar 

  4. Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sibi, M. P., Manyem, S. & Zimmerman, J. Enantioselective radical processes. Chem. Rev. 103, 3263–3296 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Shevick, S. L. et al. Catalytic hydrogen atom transfer to alkenes: a roadmap for metal hydrides and radicals. Chem. Sci. 11, 12401–12422 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schilter, D., Camara, J. M., Huynh, M. T., Hammes-Schiffer, S. & Rauchfuss, T. B. Hydrogenase enzymes and their synthetic models: the role of metal hydrides. Chem. Rev. 116, 8693–8749 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lee, W.-C. C., Wang, D.-S., Zhu, Y. & Zhang, X. P. Iron(III)-based metalloradical catalysis for asymmetric cyclopropanation via a stepwise radical mechanism. Nat. Chem. 15, 1569–1580 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mukaiyama, T. et al. Oxidation-reduction hydration of olefins with molecular oxygen and 2-propanol catalyzed by bis(acetylacetonato)cobalt(II). Chem. Lett. 18, 449–452 (1989).

    Article  Google Scholar 

  10. Waser, J. & Carreira, E. M. Convenient synthesis of alkylhydrazides by the cobalt-catalyzed hydrohydrazination reaction of olefins and azodicarboxylates. J. Am. Chem. Soc. 126, 5676–5677 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Choi, J., Tang, L. & Norton, J. R. Kinetics of hydrogen atom transfer from (η5-C5H5)Cr(CO)3H to various olefins: influence of olefin structure. J. Am. Chem. Soc. 129, 234–240 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Ishikawa, H. et al. Total synthesis of vinblastine, vincristine, related natural products, and key structural analogues. J. Am. Chem. Soc. 131, 4904–4916 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma, X. S. & Herzon, S. B. Intermolecular hydropyridylation of unactivated alkenes. J. Am. Chem. Soc. 138, 8718–8721 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Lo, J. C., Yabe, Y. & Baran, P. S. A practical and catalytic reductive olefin coupling. J. Am. Chem. Soc. 136, 1304–1307 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Discolo, C. A., Touney, E. E. & Pronin, S. V. Catalytic asymmetric radical-polar crossover hydroalkoxylation. J. Am. Chem. Soc. 141, 17527–17532 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Ebisawa, K. et al. Catalyst- and silane-controlled enantioselective hydrofunctionalization of alkenes by cobalt-catalyzed hydrogen atom transfer and radical-polar crossover. J. Am. Chem. Soc. 142, 13481–13490 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, G. & Zhang, Q. Cobalt-catalyzed HAT reaction for asymmetric hydrofunctionalization of alkenes and nucleophiles. Chem Catal. 3, 100526 (2023).

    CAS  Google Scholar 

  18. Wang, J.-J. et al. Mimicking hydrogen-atom-transfer-like reactivity in copper-catalysed olefin hydrofunctionalization. Nat. Catal. 7, 838–846 (2024).

    Article  CAS  Google Scholar 

  19. Buzsaki, S. R. et al. Fe/thiol cooperative hydrogen atom transfer olefin hydrogenation: mechanistic insights that inform enantioselective catalysis. J. Am. Chem. Soc. 146, 17296–17310 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hammer, S. C., Marjanovic, A., Dominicus, J. M., Nestl, B. M. & Hauer, B. Squalene hopene cyclases are protonases for stereoselective Brønsted acid catalysis. Nat. Chem. Biol. 11, 121–126 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Gergel, S. et al. Engineered cytochrome P450 for direct arylalkene-to-ketone oxidation via highly reactive carbocation intermediates. Nat. Catal. 6, 606–617 (2023).

    Article  CAS  Google Scholar 

  22. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  23. Vargas, D. A. et al. Biocatalytic strategy for the construction of sp3-rich polycyclic compounds from directed evolution and computational modelling. Nat. Chem. 16, 817–826 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bruffy, S. K. et al. Biocatalytic asymmetric aldol addition into unactivated ketones. Nat. Chem. 16, 2076–2083 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Nakano, Y., Biegasiewicz, K. F. & Hyster, T. K. Biocatalytic hydrogen atom transfer: an invigorating approach to free-radical reactions. Curr. Opin. Chem. Biol. 49, 16–24 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Van Stappen, C. et al. Designing artificial metalloenzymes by tuning of the environment beyond the primary coordination sphere. Chem. Rev. 122, 11974–12045 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen, K. & Arnold, F. H. Engineering new catalytic activities in enzymes. Nat. Catal. 3, 203–213 (2020).

    Article  CAS  Google Scholar 

  28. Emmanuel, M. A. et al. Photobiocatalytic strategies for organic synthesis. Chem. Rev. 123, 5459–5520 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, Q., Chin, M., Fu, Y., Liu, P. & Yang, Y. Stereodivergent atom-transfer radical cyclization by engineered cytochromes P450. Science 374, 1612–1616 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rui, J. et al. Directed evolution of nonheme iron enzymes to access abiological radical-relay C(sp3)-H azidation. Science 376, 869–874 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zetzsche, L. E. et al. Biocatalytic oxidative cross-coupling reactions for biaryl bond formation. Nature 603, 79–85 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Xu, Y. et al. A light-driven enzymatic enantioselective radical acylation. Nature 625, 74–78 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Chen, R., Kayrouz, C. S., McAmis, E., Clark, D. S. & Hartwig, J. F. Carbonic anhydrase variants catalyze the reduction of dialkyl ketones with high enantioselectivity. Angew. Chem. Int. Ed. 63, e202407111 (2024).

    Article  CAS  Google Scholar 

  34. Ji, P., Park, J., Gu, Y., Clark, D. S. & Hartwig, J. F. Abiotic reduction of ketones with silanes catalysed by carbonic anhydrase through an enzymatic zinc hydride. Nat. Chem. 13, 312–318 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, X. et al. Repurposing myoglobin into an abiological asymmetric ketoreductase. Chem 10, 2577–2589 (2024).

    Article  CAS  Google Scholar 

  36. Wan, Z. et al. Stereoconvergent reduction of alkenes using a repurposed iron-based dioxygenase. Nat. Synth. https://doi.org/10.1038/s44160-025-00788-6 (2025).

    Article  Google Scholar 

  37. Li, J., Kumar, A. & Lewis, J. C. Non-native intramolecular radical cyclization catalyzed by a B12-dependent enzyme. Angew. Chem. Int. Ed. 62, e202312893 (2023).

    Article  CAS  Google Scholar 

  38. Wang, B. et al. Repurposing iron- and 2-oxoglutarate-dependent oxygenases to catalyze olefin hydration. Angew. Chem. Int. Ed. 62, e202311099 (2023).

    Article  CAS  Google Scholar 

  39. Chen, D. et al. An evolved artificial radical cyclase enables the construction of bicyclic terpenoid scaffolds via an H-atom transfer pathway. Nat. Chem. 16, 1656–1664 (2024).

    Article  CAS  PubMed  Google Scholar 

  40. Fansher, D. J., Besna, J. N., Fendri, A. & Pelletier, J. N. Choose your own adventure: a comprehensive database of reactions catalyzed by cytochrome P450 BM3 variants. ACS Catal. 14, 5560–5592 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim, D., Rahaman, S. M. W., Mercado, B. Q., Poli, R. & Holland, P. L. Roles of iron complexes in catalytic radical alkene cross-coupling: a computational and mechanistic study. J. Am. Chem. Soc. 141, 7473–7485 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li, H. Y., Darwish, K. & Poulos, T. L. Characterization of recombinant Bacillus megaterium cytochrome P-450 BM-3 and its two functional domains. J. Biol. Chem. 266, 11909–11914 (1991).

    Article  CAS  PubMed  Google Scholar 

  43. Gröger, H., Gallou, F. & Lipshutz, B. H. Where chemocatalysis meets biocatalysis: in water. Chem. Rev. 123, 5262–5296 (2023).

    Article  PubMed  Google Scholar 

  44. Andersson, M. P., Gallou, F., Klumphu, P., Takale, B. S. & Lipshutz, B. H. Structure of nanoparticles derived from designer surfactant TPGS-750-M in water, as used in organic synthesis. Chem. Eur. J. 24, 6778–6786 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Turner, O. J., Murphy, J. A., Hirst, D. J. & Talbot, E. P. A. Hydrogen atom transfer-mediated cyclisations of nitriles. Chem. Eur. J. 24, 18658–18662 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Saladrigas, M., Loren, G., Bonjoch, J. & Bradshaw, B. Hydrogen atom transfer (HAT)-triggered iron-catalyzed intra- and intermolecular coupling of alkenes with hydrazones: access to complex amines. ACS Catal. 8, 11699–11703 (2018).

    Article  CAS  Google Scholar 

  47. Drienovská, I., Mayer, C., Dulson, C. & Roelfes, G. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat. Chem. 10, 946–952 (2018).

    Article  PubMed  Google Scholar 

  48. Kato, S., Abe, M., Gröger, H. & Hayashi, T. Reconstitution of myoglobin with iron porphycene generates an artificial aldoxime dehydratase with expanded catalytic activities. ACS Catal. 14, 13081–13087 (2024).

    Article  CAS  Google Scholar 

  49. Chen, K., Wang, Z., Ding, K., Chen, Y. & Asano, Y. Recent progress on discovery and research of aldoxime dehydratases. Green Synth. Catal. 2, 179–186 (2021).

    Google Scholar 

  50. Mohamed, H., Ghith, A. & Bell, S. G. The binding of nitrogen-donor ligands to the ferric and ferrous forms of cytochrome P450 enzymes. J. Inorg. Biochem. 242, 112168 (2023).

    Article  CAS  PubMed  Google Scholar 

  51. Omura, T. & Sato, R. The carbon monoxide-binding pigment of liver microsomes: I. Evidence for its hemoprotein nature. J. Biol. Chem. 239, 2370–2378 (1964).

    Article  CAS  PubMed  Google Scholar 

  52. Zheng, J., Kwak, K., Xie, J. & Fayer, M. D. Ultrafast carbon-carbon single-bond rotational isomerization in room-temperature solution. Science 313, 1951–1955 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  53. Yan, M., Lo, J. C., Edwards, J. T. & Baran, P. S. Radicals: reactive intermediates with translational potential. J. Am. Chem. Soc. 138, 12692–12714 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Koo, L. S., Immoos, C. E., Cohen, M. S., Farmer, P. J. & Ortiz de Montellano, P. R. Enhanced electron transfer and lauric acid hydroxylation by site-directed mutagenesis of CYP119. J. Am. Chem. Soc. 124, 5684–5691 (2002).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

T.R.W. thanks the NCCR Catalysis (grant no. 180544), a National Centre of Competence in Research funded by the Swiss National Science Foundation. Additional funding was provided by the NCCR Molecular Systems Engineering (grant no. 200021_178760). We acknowledge T. Weymuth and M. Reiher for help with the computational studies. We acknowledge J. Stropp and D. Klose for their assistance with preliminary electron paramagnetic resonance studies. We acknowledge T. Kardashliev and Z. Zou for providing original plasmids of various haemoproteins. We acknowledge J. Zurflüh for the help with the GC-MS analysis.

Author information

Authors and Affiliations

Authors

Contributions

T.R.W., X.Z. and D.C. conceived and designed the study. X.Z. and D.C. contributed equally to the synthesis of the substrates and products in Fig. 3, directed evolution of both P450BM3 and CYP119, and the mechanistic study in Fig. 5 and Supplementary Information. X.Z. and D.C. performed the catalytic experiment; X.Z. recorded the data. X.Z. and M.Á. contributed to the synthesis of substrates and products in Fig. 4 as well as the double-blind experiments. T.R.W., X.Z. and D.C. analysed the data. T.R.W., X.Z. and D.C. wrote the paper. All authors gave approval for the final version of the paper.

Corresponding author

Correspondence to Thomas R. Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Elaine O’Reilly and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1

Schematic representations of active sites in natural hydrogenases (a) and selected examples illustrating the application of MHAT in total synthesis (b).

Extended Data Fig. 2 Mechanistic studies.

a, UV-Vis spectra of purified P450BM3_LQQ (black), purified P450BM3_LQQ with Na2S2O4 before (red) and after purging with CO (blue), and purified P450BM3_LQQ with PhSiH3 before (green) and after purging with CO (purple). (Inset) Expanded view of the region between 450 and 700 nm. All spectra were collected under anaerobic conditions. b, Investigation of the involvement of P450-FeII in the radical cyclization of diene 1. (Upper) Standard reaction conditions with addition of excess Na2S2O4 did not yield any pyrrolidine 2, in contrast to standard conditions without the additive. (Lower) Additional experiments were carried out in a glove box without any additive or with air or K3Fe(CN)6 as the additive. The clock icon was created with BioRender.com.

Source Data

Supplementary information

Source data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, D., Álvarez, M. et al. Repurposing haemoproteins for asymmetric metal-catalysed H atom transfer. Nature 644, 381–390 (2025). https://doi.org/10.1038/s41586-025-09308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09308-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing