Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The Biodiversity Cell Atlas: mapping the tree of life at cellular resolution

Abstract

Cell types are fundamental functional units that can be traced across the tree of life. Rapid advances in single-cell technologies, coupled with the phylogenetic expansion in genome sequencing, present opportunities for the molecular characterization of cells across a broad range of organisms. Despite these developments, our understanding of eukaryotic cell diversity remains limited and we are far from decoding this diversity from genome sequences. Here we introduce the Biodiversity Cell Atlas initiative, which aims to create comprehensive single-cell molecular atlases across the eukaryotic tree of life. This community effort will be phylogenetically informed, rely on high-quality genomes and use shared standards to facilitate comparisons across species. The Biodiversity Cell Atlas aspires to deepen our understanding of the evolution and diversity of life at the cellular level, encompassing gene regulatory programs, differentiation trajectories, cell-type-specific molecular profiles and inter-organismal interactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The BCA aims at molecularly characterizing cell types across the eukaryotic tree of life.
Fig. 2: BCA anticipated impacts.
Fig. 3: Phylogenetic state-of-the-art of single-cell atlases across eukaryotes.

Similar content being viewed by others

References

  1. Goffeau, A. et al. Life with 6000 genes. Science 274, 546–567 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. C. elegans Sequencing Consortium.Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282, 2012–2018 (1998).

    Article  ADS  Google Scholar 

  3. Initiative, T. A. G. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796–815 (2000).

    Article  ADS  Google Scholar 

  4. Lander, E. S. et al. Initial sequencing and analysis of the human genome. Nature 409, 860–921 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Lewin, H. A. et al. Earth BioGenome Project: sequencing life for the future of life. Proc. Natl Acad. Sci. USA 115, 4325–4333 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lewin, H. A. et al. The Earth BioGenome Project 2020: starting the clock. Proc. Natl Acad. Sci. USA 119, e2115635118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sullivan, P. F. et al. Leveraging base-pair mammalian constraint to understand genetic variation and human disease. Science 380, eabn2937 (2024).

    Article  Google Scholar 

  8. Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).

    Article  CAS  PubMed  Google Scholar 

  9. Smith, S. D., Pennell, M. W., Dunn, C. W. & Edwards, S. V. Phylogenetics is the new genetics (for most of biodiversity). Trends Ecol. Evol. 35, 415–425 (2020).

    Article  PubMed  Google Scholar 

  10. Kim, S. & Wysocka, J. Deciphering the multi-scale, quantitative cis-regulatory code. Mol. Cell 83, 373–392 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Oliver, S. G. From DNA sequence to biological function. Nature 379, 597–600 (1996).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Arendt, D. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet. 9, 868–882 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Kolodziejczyk, A. A., Kim, J. K., Svensson, V., Marioni, J. C. & Teichmann, S. A. The technology and biology of single-cell RNA sequencing. Mol. Cell 58, 610–620 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. Nature 596, 211–220 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Minnoye, L. et al. Chromatin accessibility profiling methods. Nat. Rev. Meth. Primers 1, 10 (2021).

    Article  CAS  Google Scholar 

  16. Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–205 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lee, T. A. et al. A single-nucleus atlas of seed-to-seed development in Arabidopsis. Preprint at bioRxiv https://doi.org/10.1101/2023.03.23.533992 (2023).

  19. Schaum, N. et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    Article  ADS  PubMed Central  Google Scholar 

  20. Li, H. et al. Fly Cell Atlas: a single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zhang, X. et al. A spatially resolved multi-omic single-cell atlas of soybean development. Cell 188, 550–567 (2025).

    Article  CAS  PubMed  Google Scholar 

  22. Marand, A. P., Chen, Z., Gallavotti, A. & Schmitz, R. J. A cis-regulatory atlas in maize at single-cell resolution. Cell 184, 3041–3055 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Cao, J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357, 661–667 (2017). References 18–23 represent comprehensive whole-organism cell atlases for animal and plant model species.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. Toker, I. A. et al. Divergence in neuronal signaling pathways despite conserved neuronal identity among Caenorhabditis species. Curr. Biol. 35, 2927–2945 (2025).

  25. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS ONE 6, e28766 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mendieta, J. P. et al. Investigating the cis-regulatory basis of C3 and C4 photosynthesis in grasses at single-cell resolution. Proc. Natl Acad. Sci. USA 121, e2402781121 (2024).

  28. Triesch, S. et al. Single-nuclei sequencing of Moricandia arvensis reveals bundle sheath cell function in the photorespiratory shuttle of C3-C4 intermediate Brassicaceae. J. Exp. Bot. https://doi.org/10.1093/jxb/eraf245 (2025).

  29. Li, J. et al. Deep learning of cross-species single-cell landscapes identifies conserved regulatory programs underlying cell types. Nat. Genet. 54, 1711–1720 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Agarwal, V. & Shendure, J. Predicting mRNA abundance directly from genomic sequence using deep convolutional neural networks. Cell Rep. 31, 107663 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Avsec, Ž. et al. Effective gene expression prediction from sequence by integrating long-range interactions. Nat. Methods 18, 1196–1203 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Janssens, J. et al. Decoding gene regulation in the fly brain. Nature 601, 630–636 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  33. Pearce, J. D. et al. A cross-species generative cell atlas across 1.5 billion years of evolution: the TranscriptFormer single-cell model. Preprint at bioRxiv https://doi.org/10.1101/2025.04.25.650731 (2025).

  34. Taskiran, I. I. et al. Cell-type-directed design of synthetic enhancers. Nature 626, 212–220 (2024).

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Mich, J. K. et al. Functional enhancer elements drive subclass-selective expression from mouse to primate neocortex. Cell Rep. 34, 108754 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary data. Nature 599, 91–95 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Church, S. H., Mah, J. L. & Dunn, C. W. Integrating phylogenies into single-cell RNA sequencing analysis allows comparisons across species, genes, and cells. PLoS Biol. 22, e3002633 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Del Campo, J. et al. The others: our biased perspective of eukaryotic genomes. Trends Ecol. Evol. 29, 252–259 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ku, C. & Sebé-Pedrós, A. Using single-cell transcriptomics to understand functional states and interactions in microbial eukaryotes. Philos. Trans. R. Soc. B 374, 20190098 (2019).

    Article  CAS  Google Scholar 

  40. Alacid, E. & Richards, T. A. A cell–cell atlas approach for understanding symbiotic interactions between microbes. Curr. Opin. Microbiol. 64, 47–59 (2021).

    Article  CAS  PubMed  Google Scholar 

  41. Hu, M., Zheng, X., Fan, C.-M. & Zheng, Y. Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature 582, 534–538 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. Levy, S. et al. A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell 184, 2973–2987 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Serrano, K. et al. Spatial co-transcriptomics reveals discrete stages of the arbuscular mycorrhizal symbiosis. Nat. Plants 10, 673–688 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fromm, A. et al. Single-cell RNA-seq of the rare virosphere reveals the native hosts of giant viruses in the marine environment. Nat. Microbiol. 9, 1619–1629 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ku, C. et al. A single-cell view on alga-virus interactions reveals sequential transcriptional programs and infection states. Sci. Adv. 6, eaba4137 (2020). References 4245 represent the first examples of using single-cell methods to study symbiotic interactions, simultaneously mapping host and symbiont gene expression programs within the same cells.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Burki, F., Sandin, M. M. & Jamy, M. Diversity and ecology of protists revealed by metabarcoding. Curr. Biol. 31, 1267–1280 (2021).

    Article  Google Scholar 

  47. Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genom. 2, 100123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cordier, T., Lanzén, A., Apothéloz-Perret-Gentil, L., Stoeck, T. & Pawlowski, J. Embracing environmental genomics and machine learning for routine biomonitoring. Trends Microbiol. 27, 387–397 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Marchetti, A. et al. Comparative metatranscriptomics identifies molecular bases for the physiological responses of phytoplankton to varying iron availability. Proc. Natl Acad. Sci. USA 109, E317–E325 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Brunet, T. & King, N. The origin of animal multicellularity and cell differentiation. Dev. Cell 43, 124–140 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sebé-Pedrós, A., Degnan, B. M. & Ruiz-Trillo, I. The origin of Metazoa: a unicellular perspective. Nat. Rev. Genet. 18, 498–512 (2017).

    Article  PubMed  Google Scholar 

  52. Arendt, D. et al. The origin and evolution of cell types. Nat. Rev. Genet. 17, 744–757 (2016). Establishes a foundational conceptual framework for the study of cell type evolution and outlines key open questions and future research directions in the field.

    Article  CAS  PubMed  Google Scholar 

  53. Archibald, J. M., Simpson, A. G. B. & Slamovits, C. H. Handbook of the Protists (Springer, 2017).

  54. Fritz-Laylin, L. K. et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631–642 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. Brunet, T. et al. Light-regulated collective contractility in a multicellular choanoflagellate. Science 366, 326–334 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  56. Brunet, T. et al. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 10, 61037 (2021).

    Article  Google Scholar 

  57. Dayel, M. J. et al. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev. Biol. 357, 73–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Phillips, M. A. et al. Malaria. Nat. Rev. Dis. Primers 3, 17050 (2017).

    Article  PubMed  Google Scholar 

  59. Häckel, E. Monograph of Monera. J. Cell Sci. s2-9, 327–341 (1869).

    Article  Google Scholar 

  60. Saville-Kent, W. A Manual of the Infusoria: Including a Description of All Known Flagellate, Ciliate, and Tentaculiferous Protozoa, British and Foreign, and an Account of the Organization and the Affinities of the Sponges Vol. 1 (D. Bogue, 1880).

  61. Ramón y Cajal, S. Histologie Du Système Nerveux de l’homme & Des Vertébrés: Cervelet, Cerveau Moyen, Rétine, Couche Optique, Corps Strié, Écorce Cérébrale Générale & Régionale, Grand Sympathique Vol. 2 (A. Maloine, 1911).

  62. Ramón y Cajal, S. Estructura de los centros nerviosos de las Aves. Revista Trimestral de Histología Normal y Patológica 1, 1–10 (1888).

  63. Virchow, R. Cellular Pathology as Based Upon Physiological and Pathological Histology (John Churchill, 1860).

  64. Hyman, L. H. The Invertebrates: Protozoa through Ctenophora (McGraw-Hill, 1940).

  65. Willmer, E. N. Cytology and Evolution (Academic, 1970).

  66. Vergara, H. M. et al. Whole-body integration of gene expression and single-cell morphology. Cell 184, 4819–4837 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Steinmetz, P. R. H. et al. Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487, 231–234 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ogino, K., Tsuneki, K. & Furuya, H. Distinction of cell types in Dicyema japonicum (phylum Dicyemida) by expression patterns of 16 genes. J. Parasitol. 97, 596–601 (2011).

    Article  PubMed  Google Scholar 

  69. Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Minnoye, L. et al. Cross-species analysis of enhancer logic using deep learning. Genome Res. 30, 1815–1834 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Alié, A. et al. The ancestral gene repertoire of animal stem cells. Proc. Natl Acad. Sci. USA 112, E7093–E7100 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Cherbas, L. et al. The transcriptional diversity of 25 Drosophila cell lines. Genome Res. 21, 301–314 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Tanay, A. & Sebé-Pedrós, A. Evolutionary cell type mapping with single-cell genomics. Trends Genet. 37, 919–932 (2021).

    Article  CAS  PubMed  Google Scholar 

  74. Musser, J. M. et al. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science 374, 717–723 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Sebé-Pedrós, A. et al. Cnidarian cell type diversity and regulation revealed by whole-organism single-cell RNA-seq. Cell 173, 1520–1534 (2018).

    Article  PubMed  Google Scholar 

  76. Sebé-Pedrós, A. et al. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2, 1176–1188 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Najle, S. R. et al. Stepwise emergence of the neuronal gene expression program in early animal evolution. Cell 186, 4676–4693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Plass, M. et al. Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics. Science 1723, eaaq1723 (2018).

    Article  Google Scholar 

  79. Fincher, C. T., Wurtzel, O., de Hoog, T., Kravarik, K. M. & Reddien, P. W. Cell type transcriptome atlas for the planarian Schmidtea mediterranea. Science 360, eaaq1736 (2018). References 75, 76, 78 and 79 represent the first whole-adult cell atlases for non-model animal species.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Robertson, H. E. et al. Single cell atlas of Xenoturbella bocki highlights limited cell-type complexity. Nat. Commun. 15, 2469 (2024).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Álvarez-Campos, P. et al. Annelid adult cell type diversity and their pluripotent cellular origins. Nat. Commun. 15, 3194 (2024).

  82. Ghaddar, A. et al. Whole-body gene expression atlas of an adult metazoan. Sci. Adv. 9, 358 (2023).

    Article  Google Scholar 

  83. Dogga, S. K. et al. A single cell atlas of sexual development in Plasmodium falciparum. Science 384, eadj4088 (2024). Exemplifies the power of single-cell analysis to molecularly characterize cell states across the life cycle of unicellular eukaryotes.

    Article  CAS  PubMed  Google Scholar 

  84. Wang, S. Y. et al. Role of epigenetics in unicellular to multicellular transition in Dictyostelium. Genome Biol. 22, 134 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Howick, V. M. et al. The Malaria Cell Atlas: single parasite transcriptomes across the complete Plasmodium life cycle. Science 365, eaaw2619 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wang, L. et al. The maturation and aging trajectory of Marchantia polymorpha at single-cell resolution. Dev. Cell 58, 1429–1444 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Tanay, A. & Regev, A. Scaling single-cell genomics from phenomenology to mechanism. Nature 541, 331–338 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  88. Domcke, S. & Shendure, J. A reference cell tree will serve science better than a reference cell atlas. Cell 186, 1103–1114 (2023).

    Article  CAS  PubMed  Google Scholar 

  89. Shafer, M. E. R. Cross-species analysis of single-cell transcriptomic data. Front. Cell Dev. Biol. 7, 175 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  90. Yan, H. et al. Evolution of plant cell-type-specific cis-regulatory elements. Preprint at bioRxiv https://doi.org/10.1101/2024.01.08.574753 (2024).

  91. Hecker, N. et al. Enhancer-driven cell type comparison reveals similarities between the mammalian and bird pallium. Science 387, eadp3957 (2025). One of the first examples of cross-species cell type comparisons based on regulatory sequence information rather than gene expression data.

  92. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Song, Y., Miao, Z., Brazma, A. & Papatheodorou, I. Benchmarking strategies for cross-species integration of single-cell RNA sequencing data. Nat. Commun. 14, 6495 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tarashansky, A. J. et al. Mapping single-cell atlases throughout Metazoa unravels cell type evolution. eLife 10, e66747 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Mah, J. L. & Dunn, C. W. Cell type evolution reconstruction across species through cell phylogenies of single-cell RNA sequencing data. Nat. Ecol. Evol. 8, 325–338 (2024). Lays out important considerations for cell type phylogenetic reconstruction and evolutionary models.

    Article  PubMed  Google Scholar 

  96. Burkhardt, P. & Jékely, G. Evolution of synapses and neurotransmitter systems: the divide-and-conquer model for early neural cell-type evolution. Curr. Opin. Neurobiol. 71, 127–138 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Arendt, D., Bertucci, P. Y., Achim, K. & Musser, J. M. Evolution of neuronal types and families. Curr. Opin. Neurobiol. 56, 144–152 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wagner, G. P. The developmental genetics of homology. Nat. Rev. Genet. 8, 473–479 (2007).

    Article  CAS  PubMed  Google Scholar 

  99. Pacureanu, A., Silva, J. C. da, Yang, Y., Bohic, S. & Cloetens, P. Nanoscale three-dimensional imaging of biological tissue with X-ray holographic tomography. In Proc. SPIE Vol. 10711 Biomedical Imaging and Sensing Conf. (eds Yatagai, T. et al.) 107112B (SPIE, 2018).

  100. Zinchenko, V., Hugger, J., Uhlmann, V., Arendt, D. & Kreshuk, A. MorphoFeatures for unsupervised exploration of cell types, tissues, and organs in volume electron microscopy. eLife 12, e80918 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Di Tommaso, P. et al. Nextflow enables reproducible computational workflows. Nat. Biotechnol. 35, 316–319 (2017).

    Article  PubMed  Google Scholar 

  102. Denisenko, E. et al. Systematic assessment of tissue dissociation and storage biases in single-cell and single-nucleus RNA-seq workflows. Genome Biol. 21, 130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Scully, T. & Klein, A. A mannitol-based buffer improves single-cell RNA sequencing of high-salt marine cells. Preprint at bioRxiv https://doi.org/10.1101/2023.04.26.538465 (2023).

  104. Chari, T. et al. Whole-animal multiplexed single-cell RNA-seq reveals transcriptional shifts across Clytia medusa cell types. Sci. Adv. 7, eabh1683 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  105. Alles, J. et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 15, 44 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  106. García-Castro, H. et al. ACME dissociation: a versatile cell fixation-dissociation method for single-cell transcriptomics. Genome Biol. 22, 89 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  107. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  108. Bageritz, J. et al. Glyoxal as an alternative fixative for single-cell RNA sequencing. G3 13, jkad160 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Jiménez-Gracia, L. et al. FixNCut: single-cell genomics through reversible tissue fixation and dissociation. Genome Biol. 25, 81 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Fortmann, S. D. et al. Fixation before dissociation using a deep eutectic solvent preserves in vivo states and phospho-signaling in single-cell sequencing. Preprint at bioRxiv https://doi.org/10.1101/2023.02.13.528370 (2023).

  111. Martin, B. K. et al. Optimized single-nucleus transcriptional profiling by combinatorial indexing. Nat. Protoc. 18, 188–207 (2023).

    Article  CAS  PubMed  Google Scholar 

  112. Habib, N. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 14, 955–958 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Petrany, M. J. et al. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat. Commun. 11, 6374 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  114. Guillotin, B. et al. A pan-grass transcriptome reveals patterns of cellular divergence in crops. Nature 617, 785–791 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Jariani, A. et al. A new protocol for single-cell RNA-seq reveals stochastic gene expression during lag phase in budding yeast. eLife 9, e55320 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Grones, C. et al. Best practices for the execution, analysis, and data storage of plant single-cell/nucleus transcriptomics. Plant Cell 36, 812–828 (2024).

  117. Heaton, H. et al. Souporcell: robust clustering of single-cell RNA-seq data by genotype without reference genotypes. Nat. Methods 17, 615–620 (2020).

  118. Guigó, R. Genome annotation: from human genetics to biodiversity genomics. Cell Genom. 3, 100375 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Weisman, C. M., Murray, A. W. & Eddy, S. R. Mixing genome annotation methods in a comparative analysis inflates the apparent number of lineage-specific genes. Curr. Biol. 32, 2632–2639 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Altenhoff, A. M. et al. Standardized benchmarking in the quest for orthologs. Nat. Methods 13, 425–430 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Glover, N. et al. Advances and applications in the quest for orthologs. Mol. Biol. Evol. 36, 2157–2164 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Rosen, Y. et al. Toward universal cell embeddings: integrating single-cell RNA-seq datasets across species with SATURN. Nat. Methods 21, 1492–1500 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Rosen, Y. et al. Universal cell embeddings: a foundation model for cell biology. Preprint at bioRxiv https://doi.org/10.1101/2023.11.28.568918 (2023).

  124. Price, P. D. et al. Detecting signatures of selection on gene expression. Nat. Ecol. Evol. 6, 1035–1045 (2022).

    Article  PubMed  Google Scholar 

  125. Bertram, J. et al. CAGEE: computational analysis of gene expression evolution. Mol. Biol. Evol. 40, msad106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Rohlfs, R. V., Harrigan, P. & Nielsen, R. Modeling gene expression evolution with an extended Ornstein–Uhlenbeck process accounting for within-species variation. Mol. Biol. Evol. 31, 201–211 (2014).

  127. Rohlfs, R. V. & Nielsen, R. Phylogenetic ANOVA: the expression variance and evolution model for quantitative trait evolution. Syst. Biol. 64, 695–708 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Challis, R., Kumar, S., Sotero-Caio, C., Brown, M. & Blaxter, M. Genomes on a Tree (GoaT): a versatile, scalable search engine for genomic and sequencing project metadata across the eukaryotic tree of life. Wellcome Open Res. 8, 24 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zeng, H. What is a cell type and how to define it? Cell 185, 2739–2755 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Osumi-Sutherland, D. et al. Cell type ontologies of the Human Cell Atlas. Nat. Cell Biol. 23, 1129–1135 (2021).

    Article  CAS  PubMed  Google Scholar 

  131. Morris, S. A. The evolving concept of cell identity in the single cell era. Development 146, dev169748 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. C. Carvalho for her expert work on the scientific illustrations and figure design. The BCA phase 0 is supported by the Gordon and Betty Moore Foundation (Grant GBMF12189). We also acknowledge financial support from the Wellcome Trust for the inaugural BCA meeting.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

A.S.-P., A.T., M.K.N.L. and D.A. wrote the paper based on discussions, comments and edits from S.A., J.A., M.I.A., M.B., P.C., S.M.C., M.D., C.D., A.E., J.F., T.G., J.G., X.G.-B., R.G., O.H., J.H.-C., M.I., A.K., H.L., C.J.L., H.M., J.M.M., L.G.N. S.R.N., L.P., S.P., I.P., M.J.P., N.R., S.Y.R., T.A.R., T.S.-S., L.M.S., E.S., J.S., Y.S., U.T. and B.W.

Corresponding author

Correspondence to Arnau Sebé-Pedrós.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Table 1

BCA single-cell dataset reporting checklist and recommended quality controls.

Full list of participants Biodiversity Cell Atlas meeting participants.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sebé-Pedrós, A., Tanay, A., Lawniczak, M.K.N. et al. The Biodiversity Cell Atlas: mapping the tree of life at cellular resolution. Nature 645, 877–885 (2025). https://doi.org/10.1038/s41586-025-09312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09312-4

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research