Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Bending the curve of land degradation to achieve global environmental goals

Abstract

Land has a vital role in sustaining human communities, nurturing diverse ecosystems and regulating the climate of our planet. As such, current rates of land degradation pose a major environmental and socioeconomic threat, driving climate change, biodiversity loss and social crises. Preventing and reversing land degradation are key objectives of the United Nations Convention to Combat Desertification and are also fundamental for the other two Rio Conventions: the United Nations Framework Convention on Climate Change and the Convention on Biological Diversity. Here we argue that the targets of these conventions can only be met by ‘bending the curve’ of land degradation and that transforming food systems is fundamental for doing so. We showcase multiple actions for tackling land degradation that also yield climate and biodiversity benefits while fostering sustainable food systems that contribute to avoiding the risk of a global food crisis. We also propose ambitious 2050 targets for the three Rio Conventions related to land and food systems. Finally, we urge collective action to acknowledge the pivotal role of land in achieving the goals of the Rio Conventions and to embed food systems within intergovernmental agreements, enabling decisive progress on the complex and interconnected global crises that we face.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global extent of land degradation in 2020.
Fig. 2: Current (2020) extent of degraded and protected land across major land uses and forecasts for 2050.

Similar content being viewed by others

References

  1. Ritchie, H. & Roser, M. Land use. Our World in Data https://ourworldindata.org/land-use (2019).

  2. United Nations Convention to Combat Desertification. Global Land Outlook 2nd Edition (United Nations Convention to Combat Desertification, 2022). This comprehensive report summarizes land system challenges, showcases transformative policies and practices, and points to cost-effective pathways to scale up SLM.

  3. Tomalka, J. et al. Stepping Back from the Precipice: Transforming Land Management to Stay within Planetary Boundaries (Potsdam Institute for Climate Impact Research, 2024).

  4. Van Dijk, M., Morley, T., Rau, M. L. & Saghai, Y. A meta-analysis of projected global food demand and population at risk of hunger for the period 2010–2050. Nat. Food 2, 494–501 (2021).

    Article  PubMed  Google Scholar 

  5. Olsson, L. et al. in Climate Change and Land: IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds Shukla, P. R. et al.) 345–436 (Cambridge Univ. Press, 2022).

  6. Andreeva O., Sebentsov A., Kust G. & Kolosov V. The Nexus Between Land Degradation Climate Change, and Migration in Central Asia (United Nations Convention to Combat Desertification and Institute of Geography of Russian Academy of Sciences, 2022).

  7. Vlek, P. L., Khamzina, A. & Tamene, L. D. (eds). Land Degradation and the Sustainable Development Goals: Threats and Potential Remedies (International Center for Tropical Agriculture, 2017).

  8. von Braun, J., Afsana, K., Fresco, L. O., Hassan, M. & Torero, M. Food system concepts and definitions for science and political action. Nat. Food 2, 748–750 (2021).

    Article  Google Scholar 

  9. Arneth, A. et al. Post-2020 biodiversity targets need to embrace climate change. Proc. Natl Acad. Sci. USA 117, 30882–30891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mahecha, M. D. et al. Biodiversity loss and climate extremes — study the feedbacks. Nature 612, 30–32 (2022).

    Article  PubMed  Google Scholar 

  11. Pörtner, H.-O. et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 380, eabl4881 (2023).

    Article  PubMed  Google Scholar 

  12. Pettorelli, N. et al. Time to integrate global climate change and biodiversity science‐policy agendas. J. Appl. Ecol. 58, 2384–2393 (2021).

    Article  Google Scholar 

  13. Suraci, J. P. et al. Achieving conservation targets by jointly addressing climate change and biodiversity loss. Ecosphere 14, e4490 (2023).

    Article  Google Scholar 

  14. Cowie, A. L., Penman, T. D., Lehmann, J. & Twomlow, S. Towards sustainable land management in the drylands: scientific connections in monitoring and assessing dryland degradation, climate change and biodiversity. Land Degrad. Develop. 22, 248–260 (2011).

    Article  Google Scholar 

  15. Thomas, R. J. Addressing land degradation and climate change in dryland agroecosystems through sustainable land management. J. Environ. Monit. 10, 595–603 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Akhtar-Schuster, M. et al. Unpacking the concept of land degradation neutrality and addressing its operation through the Rio Conventions. J. Environ. Manage. 195, 4–15 (2017).

    Article  PubMed  Google Scholar 

  17. De Bremond, A. The emergence of land systems as the nexus for sustainability transformations. Ambio 50, 1299–1303 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Meyfroidt, P. et al. Ten facts about land systems for sustainability. Proc. Natl Acad. Sci. USA 119, e2109217118 (2022). This paper synthesizes key insights from land system science about land use, highlighting its complexity, trade-offs and global interconnectedness, while offering guiding principles for achieving sustainability.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Swathes of Earth are turning into desert — but the degradation can be stopped. Nature 623, 666 (2023).

  20. COP29 Presidency. COP presidencies launch “Rio trio”. COP29 https://cop29.az/en/media-hub/news/cop-presidencies-launch-rio-trio (2024).

  21. IISD. Summary of the sixteenth session of the Conference of the Parties to the UN Convention to Combat Desertification: 2–13 December 2024. Earth Negot. Bull. 4, 313 (2024).

  22. WWF. Aligning the Rio Conventions for Sustainable Food Systems Transformation (World Wildlife Fund, 2024).

  23. Goffner, D., Sinare, H. & Gordon, L. J. The Great Green Wall for the Sahara and the Sahel Initiative as an opportunity to enhance resilience in Sahelian landscapes and livelihoods. Reg. Environ. Change 19, 1417–1428 (2019).

    Article  Google Scholar 

  24. Verdone, M. & Seidl, A. Time, space, place, and the Bonn challenge global forest restoration target. Restor. Ecol. 25, 903–911 (2017).

    Article  Google Scholar 

  25. Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018). This meta-analysis addresses the multiple environmental impacts of 40 different agricultural goods around the world across multiple food production systems.

    Article  CAS  PubMed  Google Scholar 

  26. Smith, P. et al. Which practices co-deliver food security, climate change mitigation and adaptation, and combat land degradation and desertification? Glob. Change Biol. 26, 1532–1575 (2020). This analysis of multiple practices addresses the global land challenges of climate change mitigation, climate change adaptation, combating land degradation and desertification, and delivering food security.

    Article  Google Scholar 

  27. FAO. Food Wastage Footprint: Impacts on Natural Resources (Food and Agriculture Organization, 2013).

  28. World Food Programme. 5 Facts about food waste and hunger. WFP https://www.wfp.org/stories/5-facts-about-food-waste-and-hunger (2024).

  29. UNCCD Global Mechanism. Investing in Land’s Future: Financial Needs Assessment for UNCCD (United Nations Convention to Combat Desertification, 2024).

  30. Sanborn, K. Reducing Food Waste and Hunger through Policies that Enable Food Redistribution (Center For Health Law and Policy Innovation, 2023).

  31. de Hooge, I. E., van Dulm, E. & van Trijp, H. C. M. Cosmetic specifications in the food waste issue: supply chain considerations and practices concerning suboptimal food products. J. Clean. Prod. 183, 698–709 (2018).

    Article  Google Scholar 

  32. Martínez-Valderrama, J., Guirado, E. & Maestre, F. T. Discarded food and resource depletion. Nat. Food 1, 660–662 (2020).

    Article  PubMed  Google Scholar 

  33. Haynes Stein, A. & Brinkley, C. Farm to food bank: exploring the ties between local food producers and charitable food assistance. Rural Sociol. 88, 682–707 (2023).

    Article  Google Scholar 

  34. Schmidhuber, J. & Tubiello, F. N. Global food security under climate change. Proc. Natl Acad. Sci. USA 104, 19703–19708 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xhoxhi, O., Pedersen, S. M. & Lind, K. M. How does the intermediaries’ power affect farmers-intermediaries’ trading relationship performance? World Dev. Perspect. 10, 44–50 (2018).

    Article  Google Scholar 

  36. Anastasiou, K., Baker, P., Hadjikakou, M., Hendrie, G. A. & Lawrence, M. A conceptual framework for understanding the environmental impacts of ultra-processed foods and implications for sustainable food systems. J. Clean. Prod. 368, 133155 (2022).

    Article  Google Scholar 

  37. Lane, M. M. et al. Ultra-processed food exposure and adverse health outcomes: umbrella review of epidemiological meta-analyses. Br. Med. J. 384, e077310 (2024).

    Article  Google Scholar 

  38. Pineda, E. et al. Effectiveness and policy implications of health taxes on foods high in fat, salt, and sugar. Food Policy 123, 102599 (2024).

    Article  Google Scholar 

  39. Boletín Oficial del Estado. Ley 1/2025, de 1 de abril, de prevención de las pérdidas y el desperdicio alimentario. BOE https://www.boe.es/eli/es/l/2025/04/01/1/dof/spa/pdf (2025).

  40. UNEP. Food Waste Index Report 2024 (United Nations Environment Programme, 2024).

  41. Casonato, C., Garcia-Herrero, L., Caldeira, C. & Sala, S. What a waste! Evidence of consumer food waste prevention and its effectiveness. Sustain. Prod. Consum. 41, 305–319 (2023).

    Article  Google Scholar 

  42. Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sanz, M. J. et al. Sustainable Land Management Contribution to Successful Land-based Climate Change Adaptation and Mitigation: a Report of the Science-Policy Interface (United Nations Convention to Combat Desertification, 2017).

  45. Hartmann, L. et al. Assessing the contribution of land and water management approaches to sustainable land management and achieving land degradation neutrality. Front. Sustain. Resour. Manag. 3, 1423078 (2024).

    Article  Google Scholar 

  46. Cowie, A. L. et al. Land in balance: the scientific conceptual framework for Land Degradation Neutrality. Environ. Sci. Policy 79, 25–35 (2018). This work introduces the aims and scientific conceptual framework of the LDN approach put forwards by the UNCCD.

    Article  Google Scholar 

  47. Lowder, S. K., Sánchez, M. V. & Bertini, R. Which farms feed the world and has farmland become more concentrated? World Dev. 142, 105455 (2021).

    Article  Google Scholar 

  48. Altieri, M. A. & Nicholls, C. I. in Sustainable Agriculture Reviews: Volume 11 (ed. Lichtfouse, E.) 1–29 (Springer Netherlands, 2012).

  49. Britwum, K. & Demont, M. Food security and the cultural heritage missing link. Glob. Food Secur. 35, 100660 (2022).

    Article  Google Scholar 

  50. Giller, K. E. et al. Small farms and development in sub-Saharan Africa: farming for food, for income or for lack of better options? Food Secur. 13, 1431–1454 (2021).

    Article  Google Scholar 

  51. Jayne, T. S., Snapp, S., Place, F. & Sitko, N. Sustainable agricultural intensification in an era of rural transformation in Africa. Glob. Food Secur. 20, 105–113 (2019).

    Article  Google Scholar 

  52. Stringer, L. C. et al. Adaptation and development pathways for different types of farmers. Environ. Sci. Policy 104, 174–189 (2020). This paper identifies several illustrative adaptation and development pathways that allow farmers to adapt and develop while being climate resilient and contributing minimal emissions.

    Article  Google Scholar 

  53. Mor, T. Towards a Gender-Responsive Implementation of the United Nations Convention to Combat Desertification (UN-Women, 2019).

  54. Namubiru-Mwaura, E. Gender and Land Restoration (UNCCD Global Land Outlook Working Paper, 2021).

  55. G20 Global Land Initiative. G20 Global Land Initiative. Reducing Land Degradation (G20 Global Land Initiative, 2023).

  56. Gann, G. D. et al. International principles and standards for the practice of ecological restoration. Second edition. Restor. Ecol. 27, S1–S46 (2019).

    Article  Google Scholar 

  57. Allen, C. et al. Delivering an enabling environment and multiple benefits for land degradation neutrality: stakeholder perceptions and progress. Environ. Sci. Policy 114, 109–118 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Verburg, P. H. et al. Creating an Enabling Environment for Land Degradation Neutrality and its Potential Contribution to Enhancing Well-being, Livelihoods and the Environment (United Nations Convention to Combat Desertification, 2019).

  59. FAO. Principles for Ecosystem Restoration to Guide the United Nations Decade 20212030 (Food and Agriculture Organization of the United Nations, 2021).

  60. Woroniecki, S. et al. Nature unsettled: how knowledge and power shape ‘nature-based’ approaches to societal challenges. Glob. Environ. Change 65, 102132 (2020).

    Article  Google Scholar 

  61. Rakotonarivo, O. S. et al. Resolving land tenure security is essential to deliver forest restoration. Commun. Earth Environ. 4, 179 (2023).

    Article  Google Scholar 

  62. Sunderlin, W. D. et al. Creating an appropriate tenure foundation for REDD+: the record to date and prospects for the future. World Dev. 106, 376–392 (2018).

    Article  Google Scholar 

  63. Stanturf, J. A. & Mansourian, S. Forest landscape restoration: state of play. R. Soc. Open Sci. 7, 201218 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Löfqvist, S. et al. How social considerations improve the equity and effectiveness of ecosystem restoration. BioScience 73, 134–148 (2023).

    Article  PubMed  Google Scholar 

  65. Crona, B. I. et al. Four ways blue foods can help achieve food system ambitions across nations. Nature 616, 104–112 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Stetkiewicz, S. et al. Seafood in food security: a call for bridging the terrestrial-aquatic divide. Front. Sustain. Food Syst. 5, 703152 (2022).

    Article  Google Scholar 

  68. Merrie, A. Oceans and the Global Food System (Food Planet Prize, 2021).

  69. Duarte, C. M. et al. Will the oceans help feed humanity? BioScience 59, 967–976 (2009).

    Article  Google Scholar 

  70. Liu, C. & Ralston, N. V. C. Seafood and health: what you need to know? Adv. Food Nutr. Res. 97, 275–318 (2021).

    Article  CAS  PubMed  Google Scholar 

  71. Farmery, A. K. et al. Food for all: designing sustainable and secure future seafood systems. Rev. Fish Biol. Fish. 32, 101–121 (2022).

    Article  CAS  PubMed  Google Scholar 

  72. Koehn, J. Z., Allison, E. H., Golden, C. D. & Hilborn, R. The role of seafood in sustainable diets. Environ. Res. Lett. 17, 035003 (2022).

    Article  Google Scholar 

  73. Bianchi, M. et al. Assessing seafood nutritional diversity together with climate impacts informs more comprehensive dietary advice. Commun. Earth Environ. 3, 188 (2022). This article provides an assessment of the nutrient density and greenhouse gas emissions, weighted by production method, that result from fishing and farming of globally important species.

    Article  Google Scholar 

  74. Rajapakse, N. & Kim, S.-K. Nutritional and digestive health benefits of seaweed. Adv. Food Nutr. Res. 64, 17–28 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Spillias, S. et al. Reducing global land-use pressures with seaweed farming. Nat. Sustain. 6, 380–390 (2023). This article illustrates the potential of seaweed production to reduce the environmental impacts of terrestrial agriculture.

    Article  Google Scholar 

  76. Bhuyan, M. S. Ecological risks associated with seaweed cultivation and identifying risk minimization approaches. Algal Res. 69, 102967 (2023).

    Article  Google Scholar 

  77. Parlasca, M. C. & Qaim, M. Meat consumption and sustainability. Annu. Rev. Resour. Econ. 14, 17–41 (2022).

    Article  Google Scholar 

  78. Adesogan, A. T., Havelaar, A. H., McKune, S. L., Eilittä, M. & Dahl, G. E. Animal source foods: sustainability problem or malnutrition and sustainability solution? Perspective matters. Glob. Food Secur. 25, 100325 (2020).

    Article  Google Scholar 

  79. Castonguay, A. C. et al. Navigating sustainability trade-offs in global beef production. Nat. Sustain. 6, 284–294 (2023).

    Article  Google Scholar 

  80. Manzano-Baena P. & Salguero-Herrera C. Mobile Pastoralism in the Mediterranean: Arguments and Evidence for Policy Reform and to Combat Climate Change (Mediterranean Consortium for Nature & Culture, 2018).

  81. Liao, C., Clark, P. E., DeGloria, S. D. & Barrett, C. B. Complexity in the spatial utilization of rangelands: pastoral mobility in the Horn of Africa. Appl. Geogr. 86, 208–219 (2017).

    Article  Google Scholar 

  82. Thomas, M., Pasquet, A., Aubin, J., Nahon, S. & Lecocq, T. When more is more: taking advantage of species diversity to move towards sustainable aquaculture. Biol. Rev. 96, 767–784 (2021).

    Article  PubMed  Google Scholar 

  83. Beveridge, M. C. M. et al. Meeting the food and nutrition needs of the poor: the role of fish and the opportunities and challenges emerging from the rise of aquaculture. J. Fish Biol. 83, 1067–1084 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Thematic Assessment Report on the Interlinkages among Biodiversity, Water, Food and Health. Summary for Policymakers (Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services, 2024).

  85. Cánovas-Molina, A. & García-Frapolli, E. Socio-ecological impacts of industrial aquaculture and ways forward to sustainability. Mar. Freshw. Res. 72, 1101–1109 (2021).

    Article  Google Scholar 

  86. Naylor, R. L. et al. A 20-year retrospective review of global aquaculture. Nature 591, 551–563 (2021).

    Article  CAS  PubMed  Google Scholar 

  87. Salin, K. R. & Arome Ataguba, G. in Sustainable Aquaculture (eds Hai, F. I., Visvanathan, C. & Boopathy, R.) 1–62 (Springer International Publishing, 2018).

  88. Mizuta, D. D., Froehlich, H. E. & Wilson, J. R. The changing role and definitions of aquaculture for environmental purposes. Rev. Aquac. 15, 130–141 (2023).

    Article  Google Scholar 

  89. Duarte, C. M., Bruhn, A. & Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 5, 185–193 (2022).

    Article  Google Scholar 

  90. Ragasa, C., Charo-Karisa, H., Rurangwa, E., Tran, N. & Shikuku, K. M. Sustainable aquaculture development in sub-Saharan Africa. Nat. Food 3, 92–94 (2022).

    Article  PubMed  Google Scholar 

  91. FAO. Pulses: Nutritious Seeds for a Sustainable Future (Food and Agriculture Organization, 2016).

  92. Omuse, E. R. et al. The global atlas of edible insects: analysis of diversity and commonality contributing to food systems and sustainability. Sci. Rep. 14, 5045 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. European Commission. Carbon border adjustment mechanism. European Commission https://taxation-customs.ec.europa.eu/carbon-border-adjustment-mechanism_en (2024).

  94. Wilkes, A., Reisinger, A., Wollenberg, E. & van Dijk, S. Measurement, Reporting and Verification of Livestock GHG Emissions by Developing Countries in the UNFCCC: Current Practices and Opportunities for Improvement. CCAFS Report No. 17 (CGIAR Research Program on Climate Change, Agriculture and Food Security and Global Research Alliance for Agricultural Greenhouse Gases, 2017).

  95. White, A. C., Faulkner, J. W., Conner, D. S., Méndez, V. E. & Niles, M. T. “How can you put a price on the environment?” Farmer perspectives on stewardship and payment for ecosystem services. J. Soil Water Conserv. 77, 270–283 (2022).

    Google Scholar 

  96. Guth, M., Stępień, S., Smędzik-Ambroży, K. & Matuszczak, A. Is small beautiful? Technical efficiency and environmental sustainability of small-scale family farms under the conditions of agricultural policy support. J. Rural Stud. 89, 235–247 (2022).

    Article  Google Scholar 

  97. Rossi, J. & Garner, S. A. Industrial farm animal production: a comprehensive moral critique. J. Agric. Environ. Ethics 27, 479–522 (2014).

    Article  Google Scholar 

  98. Lin, B. B. et al. Effects of industrial agriculture on climate change and the mitigation potential of small-scale agro-ecological farms. CABI Rev. 6, 1–18 (2011).

    Article  Google Scholar 

  99. Altieri, M. A., Funes-Monzote, F. R. & Petersen, P. Agroecologically efficient agricultural systems for smallholder farmers: contributions to food sovereignty. Agron. Sustain. Dev. 32, 1–13 (2012).

    Article  Google Scholar 

  100. Akanmu, A. O., Akol, A. M., Ndolo, D. O., Kutu, F. R. & Babalola, O. O. Agroecological techniques: adoption of safe and sustainable agricultural practices among the smallholder farmers in Africa. Front. Sustain. Food Syst. 7, 1143061 (2023).

    Article  Google Scholar 

  101. Scown, M. W., Brady, M. V. & Nicholas, K. A. Billions in misspent EU agricultural subsidies could support the sustainable development goals. One Earth 3, 237–250 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Potter, C. et al. The effects of environmental sustainability labels on selection, purchase, and consumption of food and drink products: a systematic review. Environ. Behav. 53, 891–925 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  103. De Marinis, P. & Sali, G. Participatory analytic hierarchy process for resource allocation in agricultural development projects. Eval. Program Plann. 80, 101793 (2020).

    Article  PubMed  Google Scholar 

  104. Dzvimbo, M. A., Monga, M. & Mashizha, T. M. Revisiting women empowerment: a review of policies on land use and food security in Zimbabwe. Adv. Soc. Sci. Res. J. 5, 4 (2018).

    Google Scholar 

  105. United Nations Convention to Combat Desertification. ICCD/COP(16)/24/Add.1. UNCCD https://www.unccd.int/official-documents/cop-16-riyadh-saudi-arabia-2024/documents/iccdcop1624add1 (2024).

  106. United Nations Convention to Combat Desertification. Land Degradation Neutrality Fund. UNCCD https://www.unccd.int/land-and-life/land-degradation-neutrality/impact-investment-fund-land-degradation-neutrality (2024).

  107. United Nations General Assembly (UNGA) of the United Nations. The human right to a clean, healthy and sustainable environment. Resolution adopted by the General Assembly 76th session: 2021–2022. UN https://digitallibrary.un.org/record/3983329?v=pdf (2022).

  108. United Nations Convention to Combat Desertification. Report of the Conference of the Parties on its sixteenth session, held in Riyadh, Saudi Arabia, from 2 to 13 December 2024. Part two: action taken by the Conference of the Parties at its sixteenth session. UNCCD https://www.unccd.int/sites/default/files/2024-12/cop24add1%20-%20advance_0.pdf (2024).

  109. Elsässer, J. P., Hickmann, T., Jinnah, S., Oberthür, S. & Van de Graaf, T. Institutional interplay in global environmental governance: lessons learned and future research. Int. Environ. Agreem. Polit. Law Econ. 22, 373–391 (2022).

    Google Scholar 

  110. Bärnthaler, R., Novy, A., Arzberger, L., Krisch, A. & Volmary, H. The power to transform structures: power complexes and the challenges for realising a wellbeing economy. Humanit. Soc. Sci. Commun. 11, 558 (2024).

    Article  Google Scholar 

  111. Verburg, P. H., Mertz, O., Erb, K.-H., Haberl, H. & Wu, W. Land system change and food security: towards multi-scale land system solutions. Curr. Opin. Environ. Sustain. 5, 494–502 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Semenchuk, P. et al. Relative effects of land conversion and land-use intensity on terrestrial vertebrate diversity. Nat. Commun. 13, 615 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Read, Q. D., Hondula, K. L. & Muth, M. K. Biodiversity effects of food system sustainability actions from farm to fork. Proc. Natl Acad. Sci. USA 119, e2113884119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Tchonkouang, R. D., Onyeaka, H. & Miri, T. From waste to plate: exploring the impact of food waste valorisation on achieving zero hunger. Sustainability 15, 10571 (2023).

    Article  CAS  Google Scholar 

  115. Levin, B. in Biodiversity Islands: Strategies for Conservation in Human-Dominated Environments (ed. Montagnini, F.) 61–88 (Springer International Publishing, 2022).

  116. Fenster, T. L., Oikawa, P. Y. & Lundgren, J. G. Regenerative almond production systems improve soil health, biodiversity, and profit. Front. Sustain. Food Syst. 5, 664359 (2021).

    Article  Google Scholar 

  117. Paramesh, V. et al. Impact of sustainable land-use management practices on soil carbon storage and soil quality in Goa State, India. Land Degrad. Dev. 33, 28–40 (2022).

    Article  Google Scholar 

  118. Critchley, W., Harari, N., Mollee, E., Mekdaschi-Studer, R. & Eichenberger, J. Sustainable land management and climate change adaptation for small-scale land users in Sub-Saharan Africa. Land 12, 1206 (2023).

    Article  Google Scholar 

  119. Strassburg, B. B. et al. Global priority areas for ecosystem restoration. Nature 586, 724–729 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Raes, L., Mittempergher, D., Piaggio, M. & Siikamäki, J. Nature-Based Recovery Can Create Jobs, Deliver Growth and Provide Value for Nature (IUCN, 2021).

  121. Ritchie, H. & Roser, M. If the world adopted a plant-based diet, we would reduce global agricultural land use from 4 to 1 billion hectares. Our World in Data https://ourworldindata.org/land-use-diets (2024)

  122. Mbow, C. et al. in Climate Change and Land: an IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (eds. Shukla. P. R. et al.) 437–550 (Cambridge Univ. Press, 2022).

  123. Sims, N. C. et al. Good Practice Guidance. SDG Indicator 15.3.1, Proportion of Land that is Degraded over Total Land Area. Version 2.0 (United Nations Convention to Combat Desertification, 2022).

  124. Conservation International. Trends.Earth. https://www.conservation.org/about/trends-earth (2022).

  125. Orr, B. J. et al. Scientific Conceptual Framework for Land Degradation Neutrality: a Report of the Science-Policy Interface (United Nations Convention to Combat Desertification, 2017).

  126. Sims, N. C. et al. Developing good practice guidance for estimating land degradation in the context of the United Nations sustainable development goals. Environ. Sci. Policy 92, 349–355 (2019).

    Article  Google Scholar 

  127. UNCCD. Report of the conference of the parties on its eleventh session, held in Windhoek from 16 to 27 September 2013. Part two: action taken United Nations Convention to Combat Desertification. UNCCD https://www.unccd.int/official-documents/cop-11-windhoek-2013/iccdcop1123add1 (2013).

  128. Feng, S., Zhao, W., Zhan, T., Yan, Y. & Pereira, P. Land degradation neutrality: a review of progress and perspectives. Ecol. Indic. 144, 109530 (2022).

    Article  Google Scholar 

  129. Gonzalez-Roglich, M. et al. Synergizing global tools to monitor progress towards land degradation neutrality: Trends.Earth and the World Overview of Conservation Approaches and Technologies sustainable land management database. Environ. Sci. Policy 93, 34–42 (2019).

    Article  Google Scholar 

  130. ESA. Land Cover CCI product user guide version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdf (ESA, 2017).

  131. Poggio, L. et al. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil 7, 217–240 (2021).

    Article  CAS  Google Scholar 

  132. Didan, K. MOD13Q1 MODIS/Terra vegetation indices 16-day L3 global 250m SIN grid V006. NASA Earth Data https://doi.org/10.5067/MODIS/MOD13Q1.006 (2015).

  133. Vu, Q. M., Le, Q. B., Frossard, E. & Vlek, P. L. Socio-economic and biophysical determinants of land degradation in Vietnam: an integrated causal analysis at the national level. Land Use Pol. 36, 605–617 (2014).

    Article  Google Scholar 

  134. Anthony, T. The impact of population growth on land degradation, case of Rwamagana district (2000–2020). Int. J. Innov. Sci. Res. Technol. 8, 2248–2270 (2023).

    Google Scholar 

  135. Weldeabzgi, G. & Gebre, A. Rapid population growth as foremost cause of land degradation in Ethiopia: a review. J. Environ. Earth Sci. 11, 8–15 (2021).

    Google Scholar 

  136. National Research Council. Population and Land Use in Developing Countries: Report of a Workshop (The National Academies Press, 1993).

  137. Smith, N. W., Fletcher, A. J., Millard, P., Hill, J. P. & McNabb, W. C. Estimating cropland requirements for global food system scenario modeling. Front. Sustain. Food Syst. https://doi.org/10.3389/fsufs.2022.1063419 (2022).

  138. Ritchie, H., Rosado, P. & Roser, M. Environmental impacts of food production. Our World in Data https://ourworldindata.org/environmental-impacts-of-food (2022).

  139. FAO. The state of food and agriculture. FAO https://www.fao.org/family-farming/detail/en/c/1245425/ (2019).

  140. Mahtta, R. et al. Urban land expansion: the role of population and economic growth for 300+ cities. Npj Urban Sustain. 2, 5 (2022).

    Article  Google Scholar 

  141. UNEP-WCMC & IUCN. Protected Planet: The World Database on Protected Areas (UNEP-WCMC and IUCN, 2020).

  142. Project Drawdown. Reduced food waste. Drawdown https://drawdown.org/solutions/reduced-food-waste (2017–2020).

  143. Project Drawdown. Regenerative annual cropping. Drawdown https://drawdown.org/solutions/regenerative-annual-cropping (2017–2020).

  144. Project Drawdown. Bamboo production. Drawdown https://drawdown.org/solutions/bamboo-production (2017–2020).

  145. Project Drawdown. Coastal wetland restoration. Drawdown https://drawdown.org/solutions/coastal-wetland-restoration (2017–2020).

  146. Project Drawdown. Silvopasture. Drawdown https://drawdown.org/solutions/silvopasture (2017–2020).

  147. Project Drawdown. Peatland protection and rewetting. Drawdown https://drawdown.org/solutions/peatland- protection-and-rewetting (2017–2020).

  148. Project Drawdown. Temperate forest restoration. Drawdown https://drawdown.org/solutions/temperate-forest-restoration (2017–2020).

  149. Project Drawdown. Tree plantations. Drawdown https://drawdown.org/solutions/tree-plantations-on-degraded-land (2017–2020).

  150. Project Drawdown. Tropical forest restoration. Drawdown https://drawdown.org/solutions/tropical-forest-restoration (2017–2020).

  151. FAO. Agricultural production statistics 2010–2023. FAO https://openknowledge.fao.org/handle/20.500.14283/cd3755en (2024).

  152. Khan, F. A., Bhat, S. A. & Narayan, S. Storage Methods for Fruits and Vegetables (Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, 2017).

  153. Project Drawdown. Seaweed farming. Drawdown https://drawdown.org/solutions/seaweed-farming (2017–2020).

  154. Nuñez, E. Wild seafood has a lower carbon footprint than red meat, cheese, and chicken, according to latest data. Oceana https://oceana.org/blog/wild-seafood-has-lower-carbon-footprint-red-meat-cheese-and-chicken-according- latest-data/ (2021).

  155. Ripple, W. J. et al. Ruminants, climate change and climate policy. Nat. Clim. Change 4, 2–5 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Office of the Vice President for Research at the King Abdullah University of Science and Technology (KAUST) for funding the writing workshop leading to this Review; S. Díaz for comments and suggestions on a previous version of this manuscript; and I. Gromicho and H. Hwang for preparing Fig. 2. F.T.M., C.M.D., M.F.M., Y.W., T.T., M.M., E.G. and H.E.B. acknowledge support from KAUST. B.F. acknowledges support from NSFC (no. 42430505). The views expressed here are those of the authors and do not necessarily reflect the views of the United Nations.

Author information

Authors and Affiliations

Authors

Contributions

F.T.M. and C.M.D. conceptualized the article, with input from all authors. F.T.M. prepared the first draft, with all co-authors participating in its editing and refinement. Estimations of land degradation, amount of land and mitigation potential were done by E.G. and F.T.M., with the assistance of T.T. and M.M.

Corresponding author

Correspondence to Fernando T. Maestre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Evan Fraser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Supplementary Tables 1–4 and Supplementary References.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maestre, F.T., Guirado, E., Armenteras, D. et al. Bending the curve of land degradation to achieve global environmental goals. Nature 644, 347–355 (2025). https://doi.org/10.1038/s41586-025-09365-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09365-5

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene