Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Kirigami-inspired parachutes with programmable reconfiguration

Abstract

The art of kirigami allows programming a sheet to deform into a particular manner with a pattern of cuts, endowing it with exotic mechanical properties and behaviours1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17. Here we program discs to deform into stably falling parachutes as they deploy under fluid–structure interaction. Parachutes are expensive and delicate to manufacture, which limits their use for humanitarian airdrops or drone delivery. Laser cutting a closed-loop kirigami pattern18 in a disc induces porosity and flexibility into an easily fabricated parachute. By performing wind tunnel testing and numerical simulations using a custom flow-induced reconfiguration model19, we develop a design tool to realize kirigami-inspired parachutes. Guided by these results, we fabricate parachutes from the centimetre to the metre scale and test them in realistic conditions. We show that at low load-to-area ratios, kirigami-inspired parachutes exhibit a comparable terminal velocity to conventional ones. However, unlike conventional parachutes that require a gliding angle for vertical stability20 and fall at random far from a target, our kirigami-inspired parachutes always fall near the target, regardless of their initial release angle. These kinds of parachutes could limit material losses during airdropping as well as decrease manufacturing costs and complexity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Kinematics of free-falling kirigami discs.
Fig. 2: Reconfiguration of kirigami discs under flow.
Fig. 3: Design space of the kirigami discs.
Fig. 4: Performance of kirigami-inspired parachutes.
Fig. 5: Kirigami-inspired parachutes in realistic conditions.

Similar content being viewed by others

Data availability

All wind-tunnel and tensile testing raw data are included as Supplementary Data 1 and 2. The FIRM is openly available at GitHub (https://github.com/lm2-poly/FIRM).

References

  1. Zhai, Z., Wu, L. & Jiang, H. Mechanical metamaterials based on origami and kirigami. Appl. Phys. Rev. 8, 041319 (2021).

    Article  ADS  CAS  Google Scholar 

  2. Jin, L. & Yang, S. Engineering kirigami frameworks toward real-world applications. Adv. Mater. 36, 2308560 (2024).

    Article  CAS  Google Scholar 

  3. Tao, J., Khosravi, H., Deshpande, V. & Li, S. Engineering by cuts: how kirigami principle enables unique mechanical properties and functionalities. Adv. Sci. 10, 2204733 (2023).

    Article  Google Scholar 

  4. Lamoureux, A., Lee, K., Shlian, M., Forrest, S. R. & Shtein, M. Dynamic kirigami structures for integrated solar tracking. Nat. Commun. 6, 8092 (2015).

    Article  ADS  PubMed  Google Scholar 

  5. Rafsanjani, A., Zhang, Y., Liu, B., Rubinstein, S. M. & Bertoldi, K. Kirigami skins make a simple soft actuator crawl. Sci. Robot. 3, eaar7555 (2018).

    Article  PubMed  Google Scholar 

  6. Branyan, C., Rafsanjani, A., Bertoldi, K., Hatton, R. L. & Mengüç, Y. Curvilinear kirigami skins let soft bending actuators slither faster. Front. Robot. AI 9, 872007 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dias, M. A. et al. Kirigami actuators. Soft Matter 13, 9087–9092 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Liu, Z. et al. Nano-kirigami with giant optical chirality. Sci. Adv. 4, eaat4436 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  9. Yang, Y., Vella, K. & Holmes, D. P. Grasping with kirigami shells. Sci. Robot. 6, eabd6426 (2021).

    Article  PubMed  Google Scholar 

  10. Forte, A. E., Melancon, D., Zanati, M., De Giorgi, M. & Bertoldi, K. Chiral mechanical metamaterials for tunable optical transmittance. Adv. Funct. Mater. 33, 2214897 (2023).

    Article  CAS  Google Scholar 

  11. Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Programming shape using kirigami tessellations. Nat. Mater. 18, 999–1004 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Choi, G. P. T., Dudte, L. H. & Mahadevan, L. Compact reconfigurable kirigami. Phys. Rev. Res. 3, 043030 (2021).

    Article  CAS  Google Scholar 

  13. Dudte, L. H., Choi, G. P. T., Becker, K. P. & Mahadevan, L. An additive framework for kirigami design. Nat. Comput. Sci. 3, 443–454 (2023).

  14. Isobe, M. & Okumura, K. Initial rigid response and softening transition of highly stretchable kirigami sheet materials. Sci. Rep. 6, 24758 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, Y., Dias, M. A. & Holmes, D. P.Multistable kirigami for tunable architected materials. Phys. Rev. Mater. 2, 110601 (2018).

    Article  CAS  Google Scholar 

  16. Isobe, M. & Okumura, K. Continuity and discontinuity of kirigami’s high-extensibility transition: a statistical-physics viewpoint. Phys. Rev. Res. 1, 022001 (2019).

    Article  CAS  Google Scholar 

  17. Cho, H. & Kim, D.-N. Controlling the stiffness of bistable kirigami surfaces via spatially varying hinges. Mater. Des. 231, 112053 (2023).

    Article  Google Scholar 

  18. Tani, M. et al. Curvy cuts: programming axisymmetric kirigami shapes. Extreme Mech. Lett. 71, 102195 (2024).

    Article  Google Scholar 

  19. Lamoureux, D., Ramananarivo, SD., Melancon, & Gosselin, F. P. Simulating flow-induced reconfiguration by coupling corotational plate finite elements with a simplified pressure drag. Extreme Mech. Lett. 74, 102271 (2024).

    Article  Google Scholar 

  20. White, F. M. & Wolf, D. F. A theory of three-dimensional parachute dynamic stability. J. Aircr. 5, 86–92 (1968).

    Article  Google Scholar 

  21. Marzin, T., Le Hay, K., de Langre, E. & Ramananarivo, S. Flow-induced deformation of kirigami sheets. Phys. Rev. Fluids 7, 023906 (2022).

    Article  ADS  Google Scholar 

  22. Carleton, A. G. & Modarres-Sadeghi, Y. Kirigami sheets in fluid flow. Extreme Mech. Lett. 71, 102198 (2024).

  23. Gamble, L., Lamoureux, A. & Shtein, M. Multifunctional composite kirigami skins for aerodynamic control. Appl. Phys. Lett. 117, 254105 (2020).

    Article  ADS  CAS  Google Scholar 

  24. Li, J. et al. Aerodynamics-assisted, efficient and scalable kirigami fog collectors. Nat. Commun. 12, 5484 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Wen, X. et al. Dynamic kirigami structures for wake flow control behind a circular cylinder. Phys. Fluids 35, 011707 (2023).

    Article  ADS  CAS  Google Scholar 

  26. Vogel, S. Drag and reconfiguration of broad leaves in high winds. J. Exp. Bot. 40, 941–948 (1989).

    Article  Google Scholar 

  27. Alben, S., Shelley, M. & Zhang, J. Drag reduction through self-similar bending of a flexible body. Nature 420, 479–481 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Schouveiler, L. & Boudaoud, A. The rolling up of sheets in a steady flow. J. Fluid Mech. 563, 71–80 (2006).

    Article  ADS  Google Scholar 

  29. Gosselin, F., de Langre, E. & Machado-Almeida, B. A. Drag reduction of flexible plates by reconfiguration. J. Fluid Mech. 650, 319–341 (2010).

    Article  ADS  CAS  Google Scholar 

  30. De Langre, E., Gutierrez, A. & Cossé, J. On the scaling of drag reduction by reconfiguration in plants. C. R. Mec. 340, 35–40 (2012).

    Article  ADS  Google Scholar 

  31. Gosselin, F. P. Mechanics of a plant in fluid flow. J. Exp. Bot. 70, 3533–3548 (2019).

    Article  CAS  PubMed  Google Scholar 

  32. Lin, Y. L., Pezzulla, M. & Reis, P. M. Fluid–structure interactions of bristled wings: the trade-off between weight and drag. J. R. Soc. Interface 20, 20230266 (2023).

  33. Zhang, X. & Nepf, H. Flow‐induced reconfiguration of aquatic plants, including the impact of leaf sheltering. Limnol. Oceanogr. 65, 2697–2712 (2020).

    Article  ADS  Google Scholar 

  34. Marjoribanks, T. I. & Paul, M. Modelling flow-induced reconfiguration of variable rigidity aquatic vegetation. J. Hydraul. Res. 60, 46–61 (2022).

    Article  Google Scholar 

  35. Schouveiler, L. & Eloy, C. Flow-induced draping. Phys. Rev. Lett. 111, 064301 (2013).

    Article  ADS  PubMed  Google Scholar 

  36. Gomez, M., Moulton, D. E. & Vella, D.Passive control of viscous flow via elastic snap-through. Phys. Rev. Lett. 119, 144502 (2017).

    Article  ADS  PubMed  Google Scholar 

  37. Wang, Z. et al. Towards energy harvesting through flow-induced snap-through oscillations. Int. J. Mech. Sci. 254, 108428 (2023).

    Article  Google Scholar 

  38. Minami, S. & Azuma, A. Various flying modes of wind-dispersal seeds. J. Theor. Biol. 225, 1–14 (2003).

    Article  ADS  PubMed  Google Scholar 

  39. Biviano, M. D. & Jensen, K. H. Settling aerodynamics is a driver of symmetry in deciduous tree leaves. J. R. Soc. Interface 22, 20240654 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Rafsanjani, A. & Bertoldi, K. Buckling-induced kirigami. Phys. Rev. Lett. 118, 084301 (2017).

    Article  ADS  PubMed  Google Scholar 

  41. Hua, R.-N., Zhu, L. & Lu, X.-Y. Dynamics of fluid flow over a circular flexible plate. J. Fluid Mech. 759, 56–72 (2014).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  42. Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. Tumbling cards. Phys. Fluids 11, 1–3 (1999).

    Article  ADS  CAS  Google Scholar 

  43. Auguste, F., Magnaudet, J. & Fabre, D. Falling styles of disks. J. Fluid Mech. 719, 388–405 (2013).

    Article  ADS  Google Scholar 

  44. Li, J. & Liu, Z. Focused-ion-beam-based nano-kirigami: from art to photonics. Nanophotonics 7, 1637–1650 (2018).

    Article  CAS  Google Scholar 

  45. Sun, Y. et al. Geometric design classification of kirigami-inspired metastructures and metamaterials. Structures 33, 3633–3643 (2021).

    Article  Google Scholar 

  46. Guttag, M., Karimi, H. H., Falcón, C. & Reis, P. M. Aeroelastic deformation of a perforated strip. Phys. Rev. Fluids 3, 014003 (2018).

    Article  ADS  Google Scholar 

  47. Pratap, M., Agrawal, A. K. & Kumar, S. Design and selection criteria of main parachute for re entry space payload. Def. Sci. J. 69, 531–537 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank C. Adler and M. Wierre for performing initial experimental tests of reconfigurable kirigami structures. D.L. acknowledges Y. Liétard for assembling the large-scale parachute, as well as G. Beltrame, H. M. Bong, M. Boukor, J. Garon, P. Gerard, A. Sibille and M. Verville for their help in testing the large-scale parachutes. We acknowledge the financial support of the Natural Sciences and Engineering Research Council of Canada (funding reference nos. RGPIN-2019-7072 and RGPIN-2023-04463). D.L. acknowledges funding by a NSERC BESC-M scholarship, the Supplément pour Études à l'Étranger BESC-SEEMS of NSERC, and a master’s scholarship of Fonds de Recherche du Québec—Nature et Technologies. S.R. acknowledges support from a JCJC grant of the Agence Nationale de la Recherche (ANR-20-CE30-0009-01).

Author information

Authors and Affiliations

Authors

Contributions

D.L., S.R., F.P.G. and D.M. proposed and developed the research idea. D.L. designed, fabricated and tested the kirigami disks and parachutes for the initial submission of the manuscript. J.F. fabricated the kirigami parachutes for the revised version of the manuscript. D.L. conducted the numerical simulations. D.L., J.F., S.R., F.P.G. and D.M. wrote the paper. S.R., F.P.G. and D.M. supervised the research.

Corresponding authors

Correspondence to Frédérick P. Gosselin or David Melancon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks the anonymous reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Lateral displacement of plain and kirigami disks during free fall.

a. Plain circular disk. b. Cutting pattern of kirigami disk Design A. c. Cutting pattern of kirigami disk Design B. d. Lateral displacement as a function of vertical height during free fall for ten disks with no cuts (d), ten disks with cutting pattern Design A (e), and ten disks with cutting pattern Design B (f).

Extended Data Fig. 2 Manufacturing method for both small and meter-scale parachutes.

a. Laser cutting process using the TROTEC Speedy 400 Flexx, leading to (b) small parachute specimens. b. Laser cutting of large parachute specimen sectors and c. adhesive patches to link the parachute sectors. e. Assembly method between two sectors leading to f. assembling the patched sectors into the whole parachute. g. Complete assembled meter-scale parachute h. observing mode \({\mathcal{K}}\) under its own weight up to i. the height of one of the authors.

Extended Data Fig. 3 Mechanical characterization of the base material.

Maximum displacement wmax of different Mylar sheets of lengths L obtained through bending tests. Due to the laminated nature of the sheet, an anisotropy is obtained when the sheet is bending in different directions, which is illustrated through the different fits.

Extended Data Fig. 4 Force-displacement curves of different closed-loop kirigami specimens.

a. Hysteresis and error of the force-displacement curve of the Design B kirigami disk. The line shows the average of six force-displacement curves over three traction cycles while the shaded area shows three times the standard deviation. b-f. The force-displacement curves of the specimens with varied b. radial spacing Δr2, c. radial distribution exponent n, d. number of angular sectors Nθ, e. cutting ratio Θ and f. thickness t also present initial stiffnesses of the tested specimens.

Extended Data Fig. 5 Comparison between experimental and numerical force-displacement curves of Design B.

Force applied F to the kirigami disk designs to obtain the displacement of the center w using experiments and numerical simulations. Accompanying images show the deformed shape of Design B at different displacements, which are similar to the deformed shapes of Design A, as the deformation is forced to be in mode \({\mathcal{K}}\).

Extended Data Fig. 6 Drag of the kirigami specimens D according to the flow velocity U.

a. Total measured drag of a rigid disk along with the contributions from the stand and the isolated specimen. b-f. The drag-velocity curves of the specimens with with varied b. radial spacing Δr2, c. radial distribution exponent n, d. number of angular sectors Nθ, e. cutting ratio Θ and f. thickness t, where the markers show the deformation mode (diamonds are mode \({\mathcal{K}}\) and circles is mode \({\mathcal{C}}\)).

Extended Data Fig. 7 Elongation of the kirigami specimens w under flow velocity U.

a. Schematic of the deformed kirigami disk. b-f. Displacement-velocity curves of the specimens with with varied b. radial spacing Δr2, c. radial distribution exponent n, d. number of angular sectors Nθ, e. cutting ratio Θ and f. thickness t, where the markers show the deformation mode (diamonds are mode \({\mathcal{K}}\) and circles is mode \({\mathcal{C}}\)).

Extended Data Fig. 8 Magnitude of the lateral acceleration as a function of time during fall.

a. Results for Design A deforming in the cylindrical mode \({\mathcal{C}}\). b. Results for Design B deforming in the kirigami mode \({\mathcal{K}}\). The lines and shaded areas are the average and standard deviation of three fall experiments.

Extended Data Fig. 9 Performance of a conventional parachute.

a. Vertical acceleration, \(\ddot{z}\), and velocity, \(\dot{z}\), of the conventional parachute. The solid line and shaded area are the average and standard deviation of the vertical acceleration of three fall experiments measured with an accelerometer. The dashed line is the vertical velocity obtained by integrating numerically the mean vertical acceleration of three fall experiments. b. Lateral displacement of the conventional parachute across multiple drop tests. Inset shows the parachute by Fruity Chutes.

Supplementary information

Supplementary Information

This file includes Supporting Methods, Supplementary Figs. 1–5, legends for Supplementary Videos 1–5, legends for Supplementary Data 1 and 2, and Supplementary References.

Supplementary Data 1

Raw data from the experimental wind-tunnel test conducted on the kirigami specimens.

Supplementary Data 2

Raw data from the experimental tensile tests on Design A and Design B.

Peer Review File

Supplementary Video 1

Manufacturing and drop tests: overview of the manufacturing process and drop testing of our kirigami-inspired parachutes.

Supplementary Video 2

Wind tunnel testing and simulations: kirigami disks deforming in mode C and K in the wind-tunnel and corresponding FIRM simulations.

Supplementary Video 3

Manufacturing of large-scale parachutes: time-lapse of the manufacturing and opening of a meter-scale parachute.

Supplementary Video 4

Falling behaviour of a large-scale kirigami-inspired parachute in realistic conditions: dropping of a water bottle from a drone at 60 m elevation using our kirigami-inspired parachute.

Supplementary Video 5

Mass dropping of two different populations of kirigami-inspired parachutes: distinct falling behaviour of kirigami parachute modes C and K leads to self-sorting during a drop test.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamoureux, D., Fillion, J., Ramananarivo, S. et al. Kirigami-inspired parachutes with programmable reconfiguration. Nature 646, 88–94 (2025). https://doi.org/10.1038/s41586-025-09515-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-09515-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing