Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A CAR enhancer increases the activity and persistence of CAR T cells

Abstract

Although chimeric antigen receptor (CAR) T cell therapies have demonstrated promising clinical outcomes, durable remissions remain limited. To extend the efficacy of CAR T cells, we develop a CAR enhancer (CAR-E), comprising a CAR T cell antigen fused to an immunomodulatory molecule. Here we demonstrate this strategy using B cell maturation antigen (BCMA) CAR T cells for the treatment of multiple myeloma, with a CAR-E consisting of the BCMA fused to a low-affinity interleukin 2 (IL-2). This selectively induces IL-2 signaling in CAR T cells upon antigen–CAR binding, enhancing T cell activation and antitumor activity while reducing IL-2-associated toxicities. We show that the BCMA CAR-E selectively binds CAR T cells and increases CAR T cell proliferation, clearance of tumor cells and development of memory CAR T cells. The memory cells retain the ability to re-expand upon restimulation, effectively controlling tumor growth upon rechallenge. Mechanistic studies reveal the involvement of both CAR and IL-2 receptor endodomains in the CAR-E mechanism of action. The CAR-E approach avoids the need for specific engineering and enables CAR T cell therapy with lower cell doses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of the BCMA CAR-E.
Fig. 2: CAR-E treatment results in enhanced persistence of CAR T cells in vivo.
Fig. 3: The BCMA CAR-E enables treatment with a low dose of CAR T cells.
Fig. 4: Lower doses of the CAR-E remain effective. The persisting CAR T cells retain the capacity to re-expand and control tumor growth upon rechallenge.
Fig. 5: The CAR-E expands CAR T cells in the absence of tumor cells in a dose-dependent manner.
Fig. 6: The CAR-E induces substantial transcriptomic changes in CAR T cells and its efficacy requires signaling through both the CAR and the IL-2R endodomains.

Similar content being viewed by others

Data availability

All relevant data are provided in this paper and Supplementary Information. RNAseq data generated in this study are available from the National Center for Biotechnology Information Sequence Read Archive (PRJNA1118916). The Ensembl H. sapiens database (https://useast.ensembl.org/Homo_sapiens/Info/Index) was used to identify RNA transcripts. Any remaining raw data are available from the corresponding author upon reasonable request.

Code availability

No custom code was developed for the analyses of the results.

References

  1. Turtle, C. J. et al. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J. Clin. Invest. 126, 2123–2138 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Roex, G. et al. Safety and clinical efficacy of BCMA CAR-T-cell therapy in multiple myeloma. J. Hematol. Oncol. 13, 164 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Raje, N. et al. Anti-BCMA CAR T-cell therapy bb2121 in relapsed or refractory multiple myeloma. N. Engl. J. Med. 380, 1726–1737 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hartmann, J., Schüßler‐Lenz, M., Bondanza, A. & Buchholz, C. J. Clinical development of CAR T cells—challenges and opportunities in translating innovative treatment concepts. EMBO Mol. Med. 9, 1183–1197 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lindner, S. E., Johnson, S. M., Brown, C. E. & Wang, L. D. Chimeric antigen receptor signaling: functional consequences and design implications. Sci. Adv. 6, eaaz3223 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Amini, L. et al. Preparing for CAR T cell therapy: patient selection, bridging therapies and lymphodepletion. Nat. Rev. Clin. Oncol. 19, 342–355 (2022).

    Article  PubMed  Google Scholar 

  7. Deng, H. et al. Efficacy of humanized anti-BCMA CAR T cell therapy in relapsed/refractory multiple myeloma patients with and without extramedullary disease. Front. Immunol. 12, 720571 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez-Otero, P. et al. Ide-cel or standard regimens in relapsed and refractory multiple myeloma. N. Engl. J. Med. 388, 1002–1014 (2023).

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, X., Rasche, L., Kortüm, K. M., Mersi, J. & Einsele, H. BCMA loss in the epoch of novel immunotherapy for multiple myeloma: from biology to clinical practice. Haematologica 108, 958–968 (2022).

    Article  PubMed Central  Google Scholar 

  10. San-Miguel, J. et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N. Engl. J. Med. 389, 335–347 (2023).

    Article  CAS  PubMed  Google Scholar 

  11. Weinkove, R., George, P., Dasyam, N. & McLellan, A. D. Selecting costimulatory domains for chimeric antigen receptors: functional and clinical considerations. Clin. Transl. Immunol. 8, e1049 (2019).

    Article  Google Scholar 

  12. Dai, Q. et al. 4-1BB signaling boosts the anti-tumor activity of CD28-incorporated 2nd generation chimeric antigen receptor-modified T cells. Front. Immunol. 11, 539654 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Majzner, R. G. et al. Tuning the antigen density requirement for CAR T-cell activity. Cancer Discov. 10, 702–723 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Cheng, Z. et al. In vivo expansion and antitumor activity of coinfused CD28- and 4-1BB-engineered CAR-T cells in patients with B cell leukemia. Mol. Ther. 26, 976–985 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drent, E. et al. Combined CD28 and 4-1BB costimulation potentiates affinity-tuned chimeric antigen receptor-engineered T cells. Clin. Cancer Res. 25, 4014–4025 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cherkassky, L. et al. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J. Clin. Invest. 126, 3130–3144 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rupp, L. J. et al. CRISPR/Cas9-mediated PD-1 disruption enhances anti-tumor efficacy of human chimeric antigen receptor T cells. Sci. Rep. 7, 737 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fraietta, J. A. et al. Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells. Nature 558, 307–312 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Feucht, J. et al. Calibration of CAR activation potential directs alternative T cell fates and therapeutic potency. Nat. Med. 25, 82–88 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Agarwal, S. et al. Deletion of the inhibitory co-receptor CTLA4 enhances and invigorates chimeric antigen receptor T cells. Immunity 56, 2388–2407 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hu, B. et al. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 20, 3025–3033 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chmielewski, M. & Abken, H. C. A. R. T. Cells releasing IL-18 convert to T-Bethigh FoxO1low effectors that exhibit augmented activity against advanced solid tumors. Cell Rep. 21, 3205–3219 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. Hurton, L. V. et al. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc. Natl Acad. Sci. USA 113, E7788–E7797 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kueberuwa, G., Kalaitsidou, M., Cheadle, E., Hawkins, R. E. & Gilham, D. E. CD19 CAR T cells expressing IL-12 eradicate lymphoma in fully lymphoreplete mice through induction of host immunity. Mol. Ther. Oncolytics 8, 41–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Hawkins, E. R., D’Souza, R. R. & Klampatsa, A. Armored CAR T-cells: the next chapter in T-cell cancer immunotherapy. Biologics 15, 95–105 (2021).

    PubMed  PubMed Central  Google Scholar 

  26. Mohammed, S. et al. Improving chimeric antigen receptor-modified T cell function by reversing the immunosuppressive tumor microenvironment of pancreatic cancer. Mol. Ther. 25, 249–258 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang, Y. et al. An IL-4/21 inverted cytokine receptor improving CAR-T cell potency in immunosuppressive solid-tumor microenvironment. Front. Immunol. 10, 1691 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sockolosky, J. T. et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine–receptor complexes. Science 359, 1037–1042 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ma, L. et al. Enhanced CAR-T cell activity against solid tumors by vaccine boosting through the chimeric receptor. Science 365, 162–168 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Reinhard, K. et al. An RNA vaccine drives expansion and efficacy of claudin-CAR-T cells against solid tumors. Science 367, 446–453 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Quayle, S. N. et al. CUE-101, a novel E7–pHLA–IL2–Fc fusion protein, enhances tumor antigen-specific T-cell activation for the treatment of HPV16-driven malignancies. Clin. Cancer Res. 26, 1953–1964 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Cibrián, D. & Sánchez-Madrid, F. CD69: from activation marker to metabolic gatekeeper. Eur. J. Immunol. 47, 946–953 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yu, A., Olosz, F., Choi, C. Y. & Malek, T. R. Efficient internalization of IL-2 depends on the distal portion of the cytoplasmic tail of the IL-2R common γ-chain and a lymphoid cell environment. J. Immunol. 165, 2556–2562 (2000).

    Article  CAS  PubMed  Google Scholar 

  34. Ali, S. A. et al. T cells expressing an anti-B-cell maturation antigen chimeric antigen receptor cause remissions of multiple myeloma. Blood 128, 1688–1700 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cohen, A. D. et al. B cell maturation antigen-specific CAR T cells are clinically active in multiple myeloma. J. Clin. Invest. 129, 2210–2221 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mailankody, S. et al. Orvacabtagene autoleucel (orva-cel), a B-cell maturation antigen (BCMA)-directed CAR T cell therapy for patients (pts) with relapsed/refractory multiple myeloma (RRMM): update of the phase 1/2 EVOLVE study (NCT03430011). J. Clin. Oncol. 38, 8504 (2020).

    Article  Google Scholar 

  37. Kochenderfer, J. N. et al. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J. Clin. Oncol. 35, 1803–1813 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Smith, E. L. et al. Development and evaluation of an optimal human single-chain variable fragment-derived BCMA-targeted CAR T cell vector. Mol. Ther. 26, 1447–1456 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Works, M. et al. Anti-B-cell maturation antigen chimeric antigen receptor T cell function against multiple myeloma is enhanced in the presence of lenalidomide. Mol. Cancer Ther. 18, 2246–2257 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Ward, M. et al. A stable murine-based RD114 retroviral packaging line efficiently transduces human hematopoietic cells. Mol. Ther. 8, 804–812 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Li, G., Park, K. & Davila, M. L. Gammaretroviral production and T cell transduction to genetically retarget primary T cells against cancer. Methods Mol. Biol. 1514, 111–118 (2017).

    Article  CAS  PubMed  Google Scholar 

  42. Guimaraes, C. P. et al. Site-specific C-terminal and internal loop labeling of proteins using sortase-mediated reactions. Nat. Protoc. 8, 1787–1799 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding was provided by the Dana-Farber Cancer Institute Innovation Research Fund Award (M.R.), the Parker Institute for Cancer Immunotherapy (M.R., Grant no. C-03160), a Blavatnik Therapeutics Challenge Award (M.R., Grant no. 223813.5124476.0008) and an American Cancer Society postdoctoral fellowship (T.R., Grant no. PF-20-015-01-CCE). We thank the Boston University Micro and Nano Imaging Core Facility and Photonics Center for providing optical imaging support through Natural Science Foundation Major Research Instrumentation Awards 2215990 and DP2HL168562 (H.T.N.). We are grateful to I. Rubin-Bejerano, M. Namchuk, E. Smith and M. Goudarzi for helpful discussions. We thank Louise Clark for her technical assistance. We thank the National Cancer Institute-sponsored Biological Resource Branch Preclinical Biologics Repository for providing the anti-CD3 antibody (OK3) and IL-2, IL-7 and IL-15. We extend our gratitude to the microscopy core and the flow cytometry core within the Department of Cancer Immunology, as well as the dedicated animal facility staff at the Dana-Farber Cancer Institute and the Boston Children’s Hospital, for their invaluable support throughout this project.

Author information

Authors and Affiliations

Authors

Contributions

T.R., S.R.M., H.M., B.B.V.L., A.S.F., L.M., K.R., R.K., A.W., Z.F., M.C., A.K., A.N., U.-J.L., H.H.A., L.B., E.S., S.C.U., J.B., S.T., J.E.R., E.C., H.S. and J.P. designed and performed experiments and analyzed the results. C.A.J., O.N., H.T.N. and K.W.W. provided specific experimental advice and technical support. M.R. planned the experiments, analyzed the data and wrote the paper with help from the other authors.

Corresponding author

Correspondence to Mohammad Rashidian.

Ethics declarations

Competing interests

T.R. and M.R. are inventors on a related patent application. M.R. is the scientific founder of Koi Biotherapeutics. C.A.J. serves as a consultant for Kite/Gilead, Novartis, BMS, Sana, Synthekine, Janssen, Miltenyi, Caribou, Galapagos, ADC Therapeutics, AstraZeneca and Abbvie, and receives research funding from Kite/Gilead. O.N. receives research support from Takeda and Janssen, participates on advisory boards for Bristol Myers Squibb, Janssen, Sanofi, Takeda and GPCR Therapeutics, and receives honoraria from Pfizer. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Christina Amatya and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Table 1.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rakhshandehroo, T., Mantri, S.R., Moravej, H. et al. A CAR enhancer increases the activity and persistence of CAR T cells. Nat Biotechnol 43, 948–959 (2025). https://doi.org/10.1038/s41587-024-02339-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-024-02339-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research