Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lipid nanoparticle-mediated mRNA delivery to CD34+ cells in rhesus monkeys

Abstract

Transplantation of ex vivo engineered hematopoietic stem cells (HSCs) can lead to robust clinical responses but carries risks of adverse events from bone marrow mobilization, chemotherapy conditioning and other factors. HSCs have been modified in vivo using lipid nanoparticles (LNPs) decorated with targeting moieties, which increases manufacturing complexity. Here we screen 105 LNPs without targeting ligands for effective homing to the bone marrow in mouse. We report an LNP named LNP67 that delivers mRNA to murine HSCs in vivo, primary human HSCs ex vivo and CD34+ cells in rhesus monkeys (Macaca mulatta) in vivo at doses of 0.25 and 0.4 mg kg−1. Without mobilization and conditioning, LNP67 can mediate delivery of mRNA to HSCs and their progenitor cells (HSPCs), as well as to the liver in rhesus monkeys, without serum cytokine activation. These data support the hypothesis that in vivo delivery to HSCs and HSPCs in nonhuman primates is feasible without targeting ligands.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Barcoded LNPs deliver mRNA to transcriptionally defined HSCs in vivo.
Fig. 2: LNP67 delivers mRNA to cells in mouse bone marrow.
Fig. 3: LNP67 delivers mRNA to transcriptionally defined HSCs in vivo.
Fig. 4: LNP67 delivers mRNA to CD34+ cells in rhesus monkeys.
Fig. 5: LNP67 delivers mRNA to primary human HSCs ex vivo.

Similar content being viewed by others

Data availability

scRNA-seq raw data were deposited to the National Center for Biotechnology Information Sequence Read Archive database (SRR28416440, SRR28416441, SRR28416442, SRR28417638 and SRR28417639) under project identifier PRJNA1090779. The mouse genome GRCm39 can be accessed at https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_000001635.27/. All other data are shown.

References

  1. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  2. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2020).

    Article  PubMed  Google Scholar 

  3. Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med. 379, 11–21 (2018).

    Article  CAS  PubMed  Google Scholar 

  4. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  5. Verve Therapeutics doses first human with an investigational in vivo base editing medicine, VERVE-101, as a potential treatment for heterozygous familial hypercholesterolemia. Verve Therapeutics https://ir.vervetx.com/news-releases/news-release-details/verve-therapeutics-doses-first-human-investigational-vivo-base (2022).

  6. Longhurst, H. J. et al. CRISPR–Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 390, 432–441 (2024).

    Article  CAS  PubMed  Google Scholar 

  7. Ferrari, G., Thrasher, A. J. & Aiuti, A. Gene therapy using haematopoietic stem and progenitor cells. Nat. Rev. Genet. 22, 216–234 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Salinas Cisneros, G. & Thein, S. L. Recent advances in the treatment of sickle cell disease. Front. Physiol. 11, 435 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Taher, A. T., Musallam, K. M. & Cappellini, M. D. β-thalassemias. N. Engl. J. Med. 384, 727–743 (2021).

    Article  PubMed  Google Scholar 

  10. Cazzola, M. Introduction to a review series on inherited anemias. Blood 136, 1215–1216 (2020).

    Article  CAS  PubMed  Google Scholar 

  11. Castagnoli, R., Delmonte, O. M., Calzoni, E. & Notarangelo, L. D. Hematopoietic stem cell transplantation in primary immunodeficiency diseases: current status and future perspectives. Front. Pediatr. 7, 295 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tan, E. Y., Boelens, J. J., Jones, S. A. & Wynn, R. F. Hematopoietic stem cell transplantation in inborn errors of metabolism. Front. Pediatr. 7, 433 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Eichler, F. et al. Hematopoietic stem-cell gene therapy for cerebral adrenoleukodystrophy. N. Engl. J. Med. 377, 1630–1638 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Frangoul, H. et al. CRISPR–Cas9 gene editing for sickle cell disease and β-thalassemia. N. Engl. J. Med. 384, 252–260 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Locatelli, F. et al. Betibeglogene autotemcel gene therapy for non-β00 genotype β-thalassemia. N. Engl. J. Med. 386, 415–427 (2021).

    Article  PubMed  Google Scholar 

  16. Kanter, J. et al. Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N. Engl. J. Med. 386, 617–628 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Domingues, M. J., Nilsson, S. K. & Cao, B. New agents in HSC mobilization. Int. J. Hematol. 105, 141–152 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Atilla, E., Ataca Atilla, P. & Demirer, T. A review of myeloablative vs reduced intensity/non-myeloablative regimens in allogeneic hematopoietic stem cell transplantations. Balkan Med. J. 34, 1–9 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 2938–2944 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Breda, L. et al. In vivo hematopoietic stem cell modification by mRNA delivery. Science 381, 436–443 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Breda, L. et al. In vivo modification of hematopoietic stem cells by targeted lipid nanoparticles encapsulating mRNA. Blood 140, 305–306 (2022).

    Article  Google Scholar 

  22. Li, C. et al. Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. Mol. Ther. Methods Clin. Dev. 24, 127–141 (2022).

    Article  PubMed  Google Scholar 

  23. Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids 2, e139 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Eygeris, Y., Patel, S., Jozic, A. & Sahay, G. Deconvoluting lipid nanoparticle structure for messenger RNA delivery. Nano Lett. 20, 4543–4549 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11, 21733–21739 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Kauffman, K. J. et al. Rapid, single-cell analysis and discovery of vectored mRNA transfection in vivo with a loxP-flanked tdTomato reporter mouse. Mol. Ther. Nucleic Acids 10, 55–63 (2018).

    Article  CAS  PubMed  Google Scholar 

  27. Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. LoPresti, S. T., Arral, M. L., Chaudhary, N. & Whitehead, K. A. The replacement of helper lipids with charged alternatives in lipid nanoparticles facilities targeted mRNA delivery to the spleen and lungs. J. Control. Release 345, 819–831 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Radmand, A. et al. The transcriptional response to lung-targeting lipid nanoparticles in vivo. Nano Lett. 23, 993–1002 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Paunovska, K. et al. A direct comparison of in vitro and in vivo nucleic acid delivery mediated by hundreds of nanoparticles reveals a weak correlation. Nano Lett. 18, 2148–2157 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dobrowolski, C. et al. Nanoparticle single-cell multiomic readouts reveal that cell heterogeneity influences lipid nanoparticle-mediated messenger RNA delivery. Nat. Nanotechnol. 17, 871–879 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Tiwari, P. M. et al. Engineered mRNA-expressed antibodies prevent respiratory syncytial virus infection. Nat. Commun. 9, 3999 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hatit, M. Z. C. et al. Species-dependent in vivo mRNA delivery and cellular responses to nanoparticles. Nat. Nanotechnol. 17, 310–318 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Becht, E. et al. Dimensionality reduction for visualizing single-cell data using UMAP. Nat. Biotechnol. 37, 38–44 (2019).

    Article  CAS  Google Scholar 

  35. Jurecic, R. Hematopoietic stem cell heterogeneity. Adv. Exp. Med. Biol. 1169, 195–211 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kim, J., Eygeris, Y., Ryals, R. C., Jozić, A. & Sahay, G. Strategies for non-viral vectors targeting organs beyond the liver. Nat. Nanotechnol. 19, 428–447 (2023).

    Article  PubMed  Google Scholar 

  37. Finn, J. D. et al. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep. 22, 2227–2235 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Kiel, M. J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Le, T. et al. BBrowser: making single-cell data easily accessible. Preprint at bioRxiv https://doi.org/10.1101/2020.12.11.414136 (2020).

  40. Moreno, A. et al. Anti-PEG antibodies inhibit the anticoagulant activity of PEGylated aptamers. Cell Chem. Biol. 26, 634–644 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Urits, I. et al. A review of patisiran (ONPATTRO®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol. Ther. 9, 301–315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  42. FDA cellular & gene therapy guidances. US Food and Drug Administration https://www.fda.gov/vaccines-blood-biologics/biologics-guidances/cellular-gene-therapy-guidances (2022).

  43. Tarantal, A. F., Noctor, S. C. & Hartigan-O’Connor, D. J. Nonhuman primates in translational research. Annu. Rev. Anim. Biosci. 10, 441–468 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lindsay, K. E. et al. Aerosol delivery of synthetic mRNA to vaginal mucosa leads to durable expression of broadly neutralizing antibodies against HIV. Mol. Ther. 28, 805–819 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  PubMed  Google Scholar 

  47. Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  PubMed  Google Scholar 

  49. Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dahlman, J. E. et al. In vivo endothelial siRNA delivery using polymeric nanoparticles with low molecular weight. Nat. Nanotechnol. 9, 648–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sager, H. B. et al. RNAi targeting multiple cell adhesion molecules reduces immune cell recruitment and vascular inflammation after myocardial infarction. Sci. Transl. Med. 8, 342ra80 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. McGinnis, C. S., Murrow, L. M. & Gartner, Z. J. DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst. 8, 329–337(2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ni, H. et al. Piperazine-derived lipid nanoparticles deliver mRNA to immune cells in vivo. Nat. Commun. 13, 4766 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tarantal, A. F. in Handbook of Experimental Animals, The Laboratory Primate (ed. Wolfe-Coote, S.) 317–352 (Elsevier Academic Press, 2005).

  58. Tarantal, A. F. et al. Nonmyeloablative conditioning regimen to increase engraftment of gene-modified hematopoietic stem cells in young rhesus monkeys. Mol. Ther. 20, 1033–1045 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guo, C., Liu, W., Hua, X., Li, H. & Jia, S. Fourier light-field microscopy. Opt. Express 27, 25573–25594 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hua, X., Liu, W. & Jia, S. High-resolution Fourier light-field microscopy for volumetric multi-color live-cell imaging. Optica 8, 614–620 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sternberg, S. Biomedical image processing. Computer 16, 22–34 (1983).

    Article  Google Scholar 

  62. Mandracchia, B. et al. Fast and accurate sCMOS noise correction for fluorescence microscopy. Nat. Commun. 11, 94 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Saha, K. et al. The NIH somatic cell genome editing program. Nature 592, 195–204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Tiegren at Emory University for copyediting the manuscript. We thank R. C. Guerrero-Ferreira at the Emory University Robert P. Apkarian Integrated Electron Microscopy Core Facility (RRID: SCR_023537) for cryo-TEM imaging. The cryo-TEM data described here were collected on the JEOL JEM-2200FS 200-kV TEM instrument supported by the National Science Foundation Major Research Instrumentation (grant 0923395). We thank P. Bagchi at the Emory Integrated Proteomics Core (EIPC) subsidized by the Emory University School of Medicine for the proteomics assay. For the proteomics assay at EIPC, additional support was provided by the Georgia Clinical and Translational Science Alliance of the National Institutes of Health (NIH; award number UL1TR002378). These studies were supported through the NIH Somatic Cell Genome Editing (SCGE) consortium. This was a collaborative effort between UH3-TR002855 (J.E.D. and P.J.S.) and the Nonhuman Primate Testing Center for Evaluation of Somatic Cell Genome-Editing Tools (U42 OD027094, to A.T.). Information about these studies is also provided in the SCGE toolkit, supported through the SCGE Dissemination and Coordinating Center (https://commonfund.nih.gov/editing)63. Studies were also supported through the base operating grant for the California National Primate Research Center (P51-OD011107). This work was funded in part through ATLANTIS NIH training grant in kidney, urology and hematology (TL1DK136047, to R.Z.).

Author information

Authors and Affiliations

Authors

Contributions

H.K., R.Z., A.T. and J.E.D. designed the experiments and analyzed data. H.K. and R.Z. led all experiments. A.T. and J.E.D. supervised the project. K.G., L.L., S.G.H., A.R., A.L. and A.S. assisted with mouse experiments. K.G. and L.L. assisted with LNP characterization. D.L. performed next-generation sequencing. A.R.P., M.Z.C.H. and H.N. designed and synthesized the ionizable lipid. H.E.P. and P.J.S. designed and synthesized the mRNA. K.H., X.H. and S.J. performed Fourier light-field fluorescence microscopy imaging of rhesus cells. M.M., C.L. and A.T. performed rhesus macaque experiments. H.K., R.Z., A.F.T. and J.E.D. wrote the initial draft, which was sent to all authors.

Corresponding author

Correspondence to James E. Dahlman.

Ethics declarations

Competing interests

M.Z.C.H., H.N. and J.E.D. have filed a provisional patent related to this manuscript (US patent application number 63/632,354). J.E.D. is an advisor to GV, Readout, Edge Animal Health and Nava Therapeutics and P.J.S. is a cofounder of Tether Therapeutics. None of these companies provided any financial support for this work. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19 and references.

Reporting Summary

Supplementary Table 1

Sequences for LNP barcodes and templates for mRNA.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Zenhausern, R., Gentry, K. et al. Lipid nanoparticle-mediated mRNA delivery to CD34+ cells in rhesus monkeys. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02470-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02470-2

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research