Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biology and applications of CRISPR–Cas12 and transposon-associated homologs

Abstract

CRISPR-associated Cas12 proteins are a highly variable collection of nucleic acid-targeting proteins. All Cas12 variants use RNA guides and a single nuclease domain to target complementary DNA or, in rare cases, RNA. The high variability of Cas12 effectors can be explained by a series of independent evolution events from different transposon-associated TnpB-like ancestors. Despite basic structural and functional similarities, this has resulted in unprecedented variation of the Cas12 effector proteins in terms of size, domain composition, guide structure, target identity and interference strategy. In this Review, we compare the unique molecular features of natural and engineered Cas12 and TnpB variants. Furthermore, we provide an overview of established genome editing and diagnostic applications and discuss potential future directions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of OMEGA nucleases to Cas9 and Cas12.
Fig. 2: Size range of OMEGA and type V effector proteins and associated RNAs.
Fig. 3: Different activities of Cas12 variants.
Fig. 4: Cas12a-based BEs and PEs.

Similar content being viewed by others

References

  1. Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).

    Article  PubMed  CAS  Google Scholar 

  2. van der Oost, J. in CRISPR: Biology and Applications (eds Barrangou, R., Sontheimer, E. J. & Marraffini, L. A.) Ch. 3 (Wiley, 2022).

  3. van der Oost, J., Jore, M. M., Westra, E. R., Lundgren, M. & Brouns, S. J. CRISPR-based adaptive and heritable immunity in prokaryotes. Trends Biochem. Sci. 34, 401–407 (2009).

    Article  PubMed  Google Scholar 

  4. Mohanraju, P. et al. Diverse evolutionary roots and mechanistic variations of the CRISPR–Cas systems. Science 353, aad5147 (2016).

    Article  PubMed  Google Scholar 

  5. Jinek, M. et al. RNA-programmed genome editing in human cells. eLife 2, e00471 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR–Cas systems. Nat. Biotechnol. 31, 233–239 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR–Cas system. Cell 163, 759–771 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Barrangou, R. et al. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Deveau, H. et al. Phage response to CRISPR-encoded resistance in Streptococcus thermophilus. J. Bacteriol. 190, 1390–1400 (2008).

    Article  PubMed  CAS  Google Scholar 

  10. Garneau, J. E. et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468, 67–71 (2010).

    Article  PubMed  CAS  Google Scholar 

  11. Deltcheva, E. et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471, 602–607 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl Acad. Sci. USA 109, E2579–E2586 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Cho, S. W., Kim, S., Kim, J. M. & Kim, J. S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    Article  PubMed  CAS  Google Scholar 

  17. Gasiunas, G. et al. A catalogue of biochemically diverse CRISPR–Cas9 orthologs. Nat. Commun. 11, 5512 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Aliaga Goltsman, D. S. et al. Compact Cas9d and HEARO enzymes for genome editing discovered from uncultivated microbes. Nat. Commun. 13, 7602 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Altae-Tran, H. et al. The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases. Science 374, 57–65 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Makarova, K. S. & Koonin, E. V. Annotation and classification of CRISPR–Cas systems. Methods Mol. Biol. 1311, 47–75 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Teng, F. et al. Repurposing CRISPR–Cas12b for mammalian genome engineering. Cell Discov. 4, 63 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wu, W. Y. et al. The miniature CRISPR–Cas12m effector binds DNA to block transcription. Mol. Cell 82, 4487–4502 (2022).

    Article  PubMed  CAS  Google Scholar 

  23. Koonin, E. V., Makarova, K. S. & Zhang, F. Diversity, classification and evolution of CRISPR–Cas systems. Curr. Opin. Microbiol. 37, 67–78 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Altae-Tran, H. et al. Diversity, evolution, and classification of the RNA-guided nucleases TnpB and Cas12. Proc. Natl Acad. Sci. USA 120, e2308224120 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Capdeville, N., Schindele, P. & Puchta, H. Getting better all the time—recent progress in the development of CRISPR/Cas-based tools for plant genome engineering. Curr. Opin. Biotechnol. 79, 102854 (2023).

    Article  PubMed  CAS  Google Scholar 

  26. Huang, C. H., Lee, K. C. & Doudna, J. A. Applications of CRISPR–Cas enzymes in cancer therapeutics and detection. Trends Cancer 4, 499–512 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Donohoue, P. D., Barrangou, R. & May, A. P. Advances in industrial biotechnology using CRISPR–Cas systems. Trends Biotechnol. 36, 134–146 (2018).

    Article  PubMed  CAS  Google Scholar 

  28. Kersulyte, D., Mukhopadhyay, A. K., Shirai, M., Nakazawa, T. & Berg, D. E. Functional organization and insertion specificity of IS607, a chimeric element of Helicobacter pylori. J. Bacteriol. 182, 5300–5308 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Karvelis, T. et al. Transposon-associated TnpB is a programmable RNA-guided DNA endonuclease. Nature 599, 692–696 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Ton-Hoang, B. et al. Single-stranded DNA transposition is coupled to host replication. Cell 142, 398–408 (2010).

    Article  PubMed  CAS  Google Scholar 

  31. Meers, C. et al. Transposon-encoded nucleases use guide RNAs to promote their selfish spread. Nature 622, 863–871 (2023).

    Article  PubMed  CAS  Google Scholar 

  32. Saito, M. et al. Fanzor is a eukaryotic programmable RNA-guided endonuclease. Nature 620, 660–668 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Jiang, K. et al. Programmable RNA-guided DNA endonucleases are widespread in eukaryotes and their viruses. Sci. Adv. 9, eadk0171 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Aravind, L., Makarova, K. S. & Koonin, E. V. Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res. 28, 3417–3432 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Majorek, K. A. et al. The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification. Nucleic Acids Res. 42, 4160–4179 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Xiang, G. et al. Evolutionary mining and functional characterization of TnpB nucleases identify efficient miniature genome editors. Nat. Biotechnol. 42, 745–757 (2024).

    Article  PubMed  CAS  Google Scholar 

  37. Makarova, K. S., Wolf, Y. I. & Koonin, E. V. in CRISPR: Biology and Applications (eds Barrangou, R., Sontheimer, E. J. & Marraffini, L. A.) Ch. 2 (Wiley, 2022).

  38. Shmakov, S. et al. Diversity and evolution of class 2 CRISPR–Cas systems. Nat. Rev. Microbiol. 15, 169–182 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Nakagawa, R. et al. Cryo-EM structure of the transposon-associated TnpB enzyme. Nature 616, 390–397 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Sasnauskas, G. et al. TnpB structure reveals minimal functional core of Cas12 nuclease family. Nature 616, 384–389 (2023).

    Article  PubMed  CAS  Google Scholar 

  41. Swarts, D. C., van der Oost, J. & Jinek, M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR–Cas12a. Mol. Cell 66, 221–233 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Huang, C. J., Adler, B. A. & Doudna, J. A. A naturally DNase-free CRISPR–Cas12c enzyme silences gene expression. Mol. Cell 82, 2148–2160 (2022).

    Article  PubMed  CAS  Google Scholar 

  43. Wiegand, T. et al. TnpB homologues exapted from transposons are RNA-guided transcription factors. Nature 631, 439–448 (2024).

    Article  PubMed  CAS  Google Scholar 

  44. Turchiano, G. et al. Quantitative evaluation of chromosomal rearrangements in gene-edited human stem cells by CAST-seq. Cell Stem Cell 28, 1136–1147 (2021).

    Article  PubMed  CAS  Google Scholar 

  45. Takeda, S. N. et al. Structure of the miniature type V-F CRISPR–Cas effector enzyme. Mol. Cell 81, 558–570 (2021).

    Article  PubMed  CAS  Google Scholar 

  46. Xiao, R., Li, Z., Wang, S., Han, R. & Chang, L. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR–Cas12f nuclease. Nucleic Acids Res. 49, 4120–4128 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Nety, S. P. et al. The transposon-encoded protein TnpB processes its own mRNA into ωRNA for guided nuclease activity. CRISPR J. 6, 232–242 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Shmakov, S. et al. Discovery and functional characterization of diverse class 2 CRISPR–Cas systems. Mol. Cell 60, 385–397 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Kurihara, N. et al. Structure of the type V-C CRISPR–Cas effector enzyme. Mol. Cell 82, 1865–1877 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Zhang, B. et al. Structural insights into target DNA recognition and cleavage by the CRISPR–Cas12c1 system. Nucleic Acids Res. 50, 11820–11833 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Li, Z., Zhang, H., Xiao, R., Han, R. & Chang, L. Cryo-EM structure of the RNA-guided ribonuclease Cas12g. Nat. Chem. Biol. 17, 387–393 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Strecker, J. et al. RNA-guided DNA insertion with CRISPR-associated transposases. Science 365, 48–53 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Sun, A. et al. The compact Casπ (Cas12l) ‘bracelet’ provides a unique structural platform for DNA manipulation. Cell Res. 33, 229–244 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Harrington, L. B. et al. A scoutRNA is required for some type V CRISPR–Cas systems. Mol. Cell 79, 416–424 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Liu, J. J. et al. CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature 566, 218–223 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Liao, C. & Beisel, C. L. The tracrRNA in CRISPR biology and technologies. Annu. Rev. Genet. 55, 161–181 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Fonfara, I., Richter, H., Bratovič, M., Le Rhun, A. & Charpentier, E. The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature 532, 517–521 (2016).

    Article  PubMed  CAS  Google Scholar 

  58. Zetsche, B. et al. Multiplex gene editing by CRISPR–Cpf1 using a single crRNA array. Nat. Biotechnol. 35, 31–34 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. Yan, W. X. et al. Functionally diverse type V CRISPR–Cas systems. Science 363, 88–91 (2019).

    Article  PubMed  CAS  Google Scholar 

  60. Pausch, P. et al. CRISPR–CasΦ from huge phages is a hypercompact genome editor. Science 369, 333–337 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Al-Shayeb, B. et al. Diverse virus-encoded CRISPR–Cas systems include streamlined genome editors. Cell 185, 4574–4586 (2022).

    Article  PubMed  CAS  Google Scholar 

  62. Zhang, H., Li, Z., Xiao, R. & Chang, L. Mechanisms for target recognition and cleavage by the Cas12i RNA-guided endonuclease. Nat. Struct. Mol. Biol. 27, 1069–1076 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Karvelis, T. et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage. Nucleic Acids Res. 48, 5016–5023 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Bravo, J. P. K. et al. RNA targeting unleashes indiscriminate nuclease activity of CRISPR–Cas12a2. Nature 613, 582–587 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Abudayyeh, O. O. et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353, aaf5573 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Abudayyeh, O. O. et al. RNA targeting with CRISPR–Cas13. Nature 550, 280–284 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gao, P., Yang, H., Rajashankar, K. R., Huang, Z. & Patel, D. J. Type V CRISPR–Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26, 901–913 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Yamano, T. et al. Structural basis for the canonical and non-canonical PAM recognition by CRISPR–Cpf1. Mol. Cell 67, 633–645 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Xiao, R. et al. Structural basis of target DNA recognition by CRISPR–Cas12k for RNA-guided DNA transposition. Mol. Cell 81, 4457–4466 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Swarts, D. C. et al. The evolutionary journey of Argonaute proteins. Nat. Struct. Mol. Biol. 21, 743–753 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Hegge, J. W., Swarts, D. C. & van der Oost, J. Prokaryotic Argonaute proteins: novel genome-editing tools? Nat. Rev. Microbiol. 16, 5–11 (2018).

    Article  PubMed  CAS  Google Scholar 

  72. Swarts, D. C. Making the cut(s): how Cas12a cleaves target and non-target DNA. Biochem. Soc. Trans. 47, 1499–1510 (2019).

    Article  PubMed  CAS  Google Scholar 

  73. Selkova, P. et al. Position of Deltaproteobacteria Cas12e nuclease cleavage sites depends on spacer length of guide RNA. RNA Biol. 17, 1472–1479 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Lei, C. et al. The CCTL (Cpf1-assisted cutting and Taq DNA ligase-assisted ligation) method for efficient editing of large DNA constructs in vitro. Nucleic Acids Res. 45, e74 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  75. Strecker, J. et al. Engineering of CRISPR–Cas12b for human genome editing. Nat. Commun. 10, 212 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Huang, X. et al. Structural basis for two metal-ion catalysis of DNA cleavage by Cas12i2. Nat. Commun. 11, 5241 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chen, J. S. et al. CRISPR–Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Harrington, L. B. et al. Programmed DNA destruction by miniature CRISPR–Cas14 enzymes. Science 362, 839–842 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Li, L. et al. HOLMESv2: a CRISPR–Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth. Biol. 8, 2228–2237 (2019).

    Article  PubMed  CAS  Google Scholar 

  80. Swarts, D. C. & Jinek, M. Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell 73, 589–600 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Marino, N. D., Pinilla-Redondo, R. & Bondy-Denomy, J. CRISPR–Cas12a targeting of ssDNA plays no detectable role in immunity. Nucleic Acids Res. 50, 6414–6422 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Dmytrenko, O. et al. Cas12a2 elicits abortive infection through RNA-triggered destruction of dsDNA. Nature 613, 588–594 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Wendt, K. E., Ungerer, J., Cobb, R. E., Zhao, H. & Pakrasi, H. B. CRISPR/Cas9 mediated targeted mutagenesis of the fast growing cyanobacterium Synechococcus elongatus UTEX 2973. Micro. Cell Fact. 15, 115 (2016).

    Article  Google Scholar 

  84. Jiang, Y. et al. CRISPR–Cpf1 assisted genome editing of Corynebacterium glutamicum. Nat. Commun. 8, 15179 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Zhang, Y. et al. Expanding the scope of plant genome engineering with Cas12a orthologs and highly multiplexable editing systems. Nat. Commun. 12, 1944 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Naduthodi, M. I. S. et al. CRISPR–Cas ribonucleoprotein mediated homology-directed repair for efficient targeted genome editing in microalgae Nannochloropsis oceanica IMET1. Biotechnol. Biofuels 12, 66 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Wrighton, P. J. et al. Chemically modified AsCas12a guide RNAs improve lipid nanoparticle–mediated in vivo gene editing in different tissues. Presented at The American Society of Gene and Cell Therapy (ASGCT) Annual Meeting, May 7–11 (2024).

  88. Sousa, P. et al. Preclinical development of EDIT301, an autologous cell therapy comprising AsCas12a-RNP modified mobilized peripheral blood-CD34+ cells for the potential treatment of transfusion dependent β thalassemia. Blood 138, 1858 (2021).

    Article  Google Scholar 

  89. Stein, R. A. Molecular scissors are making the cut…in clinical trials: treatments based on various genome editing technologies—CRISPR, TALEN, ZFN, and meganuclease technologies—are starting to reach patients. Genet. Eng. Biotechnol. N. 43, 36–38 (2023).

    Article  CAS  Google Scholar 

  90. Hino, T. et al. An AsCas12f-based compact genome-editing tool derived by deep mutational scanning and structural analysis. Cell 186, 4920–4935 (2023).

    Article  PubMed  CAS  Google Scholar 

  91. Bigelyte, G. et al. Miniature type V-F CRISPR–Cas nucleases enable targeted DNA modification in cells. Nat. Commun. 12, 6191 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kim, D. Y. et al. Efficient CRISPR editing with a hypercompact Cas12f1 and engineered guide RNAs delivered by adeno-associated virus. Nat. Biotechnol. 40, 94–102 (2022).

    Article  PubMed  CAS  Google Scholar 

  93. Wu, Z. et al. Programmed genome editing by a miniature CRISPR–Cas12f nuclease. Nat. Chem. Biol. 17, 1132–1138 (2021).

    Article  PubMed  CAS  Google Scholar 

  94. Xu, X. et al. Engineered miniature CRISPR–Cas system for mammalian genome regulation and editing. Mol. Cell 81, 4333–4345 (2021).

    Article  PubMed  CAS  Google Scholar 

  95. Chen, W. et al. Cas12n nucleases, early evolutionary intermediates of type V CRISPR, comprise a distinct family of miniature genome editors. Mol. Cell 83, 2768–2780 (2023).

    Article  PubMed  CAS  Google Scholar 

  96. Wang, Y. et al. Guide RNA engineering enables efficient CRISPR editing with a miniature Syntrophomonas palmitatica Cas12f1 nuclease. Cell Rep. 40, 111418 (2022).

    Article  PubMed  CAS  Google Scholar 

  97. Tou, C. J., Orr, B. & Kleinstiver, B. P. Precise cut-and-paste DNA insertion using engineered type V-K CRISPR-associated transposases. Nat. Biotechnol. 41, 968–979 (2023).

    Article  PubMed  CAS  Google Scholar 

  98. Zhang, H. et al. An engineered xCas12i with high activity, high specificity, and broad PAM range. Protein Cell 14, 538–543 (2023).

    PubMed  Google Scholar 

  99. Chen, Y. et al. Synergistic engineering of CRISPR–Cas nucleases enables robust mammalian genome editing. Innovation 3, 100264 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  100. Slaymaker, I. M. et al. Rationally engineered Cas9 nucleases with improved specificity. Science 351, 84–88 (2016).

    Article  PubMed  CAS  Google Scholar 

  101. Kleinstiver, B. P. et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Huang, H. et al. Engineered Cas12a-Plus nuclease enables gene editing with enhanced activity and specificity. BMC Biol. 20, 91 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Kleinstiver, B. P. et al. Engineered CRISPR–Cas12a variants with increased activities and improved targeting ranges for gene, epigenetic and base editing. Nat. Biotechnol. 37, 276–282 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Gao, L. et al. Engineered Cpf1 variants with altered PAM specificities. Nat. Biotechnol. 35, 789–792 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Tóth, E. et al. Improved LbCas12a variants with altered PAM specificities further broaden the genome targeting range of Cas12a nucleases. Nucleic Acids Res. 48, 3722–3733 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Kim, D. Y. et al. Hypercompact adenine base editors based on transposase B guided by engineered RNA. Nat. Chem. Biol. 18, 1005–1013 (2022).

    Article  PubMed  CAS  Google Scholar 

  107. Ma, E. et al. Improved genome editing by an engineered CRISPR–Cas12a. Nucleic Acids Res. 50, 12689–12701 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wu, T. et al. An engineered hypercompact CRISPR–Cas12f system with boosted gene-editing activity. Nat. Chem. Biol. 19, 1384–1393 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Li, Z. et al. Engineering a transposon-associated TnpB–ωRNA system for efficient gene editing and phenotypic correction of a tyrosinaemia mouse model. Nat. Commun. 15, 831 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. Marquart, K. F. et al. Effective genome editing with an enhanced ISDra2 TnpB system and deep learning-predicted ωRNAs. Nat. Methods https://doi.org/10.1038/s41592-024-02418-z (2024).

  111. Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Anzalone, A. V., Koblan, L. W. & Liu, D. R. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat. Biotechnol. 38, 824–844 (2020).

    Article  PubMed  CAS  Google Scholar 

  113. Gaudelli, N. M. et al. Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Parameshwaran, H. P. et al. The bridge helix of Cas12a imparts selectivity in cis-DNA cleavage and regulates trans-DNA cleavage. FEBS Lett. 595, 892–912 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Yamano, T. et al. Crystal structure of Cpf1 in complex with guide RNA and target DNA. Cell 165, 949–962 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Li, X. et al. Base editing with a Cpf1–cytidine deaminase fusion. Nat. Biotechnol. 36, 324–327 (2018).

    Article  PubMed  CAS  Google Scholar 

  117. Wang, X. et al. Cas12a base editors induce efficient and specific editing with low DNA damage response. Cell Rep. 31, 107723 (2020).

    Article  PubMed  CAS  Google Scholar 

  118. Certo, M. T. et al. Tracking genome engineering outcome at individual DNA breakpoints. Nat. Methods 8, 671–676 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Wu, W. Y., Lebbink, J. H. G., Kanaar, R., Geijsen, N. & van der Oost, J. Genome editing by natural and engineered CRISPR-associated nucleases. Nat. Chem. Biol. 14, 642–651 (2018).

    Article  PubMed  CAS  Google Scholar 

  120. Anzalone, A. V. et al. Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing. Nat. Biotechnol. 40, 731–740 (2022).

    Article  PubMed  CAS  Google Scholar 

  121. Anzalone, A. V. et al. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576, 149–157 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Kim, Y. B. et al. A novel mechanistic framework for precise sequence replacement using reverse transcriptase and diverse CRISPR–Cas systems. Preprint at bioRxiv https://doi.org/10.1101/2022.12.13.520319 (2022).

  123. Liang, R. et al. Prime editing using CRISPR–Cas12a and circular RNAs in human cells. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02095-x (2024).

  124. Liu, B. et al. A split prime editor with untethered reverse transcriptase and circular RNA template. Nat. Biotechnol. 40, 1388–1393 (2022).

    Article  PubMed  CAS  Google Scholar 

  125. Meliawati, M., Schilling, C. & Schmid, J. Recent advances of Cas12a applications in bacteria. Appl. Microbiol. Biotechnol. 105, 2981–2990 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Wu, Y. et al. CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis. Biotechnol. Bioeng. 117, 1817–1825 (2020).

    Article  PubMed  CAS  Google Scholar 

  127. Schilling, C., Koffas, M. A. G., Sieber, V. & Schmid, J. Novel prokaryotic CRISPR–Cas12a-based tool for programmable transcriptional activation and repression. ACS Synth. Biol. 9, 3353–3363 (2020).

    Article  PubMed  CAS  Google Scholar 

  128. Tak, Y. E. et al. Inducible and multiplex gene regulation using CRISPR–Cpf1-based transcription factors. Nat. Methods 14, 1163–1166 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Kong, X. et al. Engineered CRISPR–OsCas12f1 and RhCas12f1 with robust activities and expanded target range for genome editing. Nat. Commun. 14, 2046 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Liang, M. et al. Activating cryptic biosynthetic gene cluster through a CRISPR–Cas12a-mediated direct cloning approach. Nucleic Acids Res. 50, 3581–3592 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Enghiad, B. et al. Cas12a-assisted precise targeted cloning using in vivo Cre–lox recombination. Nat. Commun. 12, 1171 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Broughton, J. P. et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat. Biotechnol. 38, 870–874 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  133. Li, S. Y. et al. CRISPR–Cas12a-assisted nucleic acid detection. Cell Discov. 4, 20 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Li, S. Y. et al. CRISPR–Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 28, 491–493 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Kaminski, M. M., Abudayyeh, O. O., Gootenberg, J. S., Zhang, F. & Collins, J. J. CRISPR-based diagnostics. Nat. Biomed. Eng. 5, 643–656 (2021).

    Article  PubMed  CAS  Google Scholar 

  136. Teng, F. et al. CDetection: CRISPR–Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 20, 132 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Wang, Z. & Zhong, C. Cas12c-DETECTOR: a specific and sensitive Cas12c-based DNA detection platform. Int. J. Biol. Macromol. 193, 441–449 (2021).

    Article  PubMed  CAS  Google Scholar 

  138. Rananaware, S. R. et al. Programmable RNA detection with CRISPR–Cas12a. Nat. Commun. 14, 5409 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Zhou, S. et al. CRISPR/Cas12a-drived fluorescent and electrochemical signal-off/on dual-mode biosensors for ultrasensitive detection of EGFR 19del mutation. Sensor Actuat. B Chem. 392, 134034 (2023).

    Article  CAS  Google Scholar 

  140. Klompe, S. E., Vo, P. L. H., Halpin-Healy, T. S. & Sternberg, S. H. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration. Nature 571, 219–225 (2019).

    Article  PubMed  CAS  Google Scholar 

  141. Peters, J. E., Makarova, K. S., Shmakov, S. & Koonin, E. V. Recruitment of CRISPR–Cas systems by Tn7-like transposons. Proc. Natl Acad. Sci. USA 114, E7358–E7366 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Park, J. U. et al. Structures of the holo CRISPR RNA-guided transposon integration complex. Nature 613, 775–782 (2023).

    Article  PubMed  CAS  Google Scholar 

  143. Querques, I., Schmitz, M., Oberli, S., Chanez, C. & Jinek, M. Target site selection and remodelling by type V CRISPR-transposon systems. Nature 599, 497–502 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Altae-Tran, H. et al. Uncovering the functional diversity of rare CRISPR–Cas systems with deep terascale clustering. Science 382, eadi1910 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Durrant, M. G. et al. Systematic discovery of recombinases for efficient integration of large DNA sequences into the human genome. Nat. Biotechnol. 41, 488–499 (2023).

    Article  PubMed  CAS  Google Scholar 

  146. Chen, F. et al. Multiplexed base editing through Cas12a variant-mediated cytosine and adenine base editors. Commun. Biol. 5, 1163 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Yarnall, M. T. N. et al. Drag-and-drop genome insertion of large sequences without double-strand DNA cleavage using CRISPR-directed integrases. Nat. Biotechnol. 41, 500–512 (2023).

    Article  PubMed  CAS  Google Scholar 

  148. Vialetto, E. et al. Systematic interrogation of CRISPR antimicrobials in Klebsiella pneumoniae reveals nuclease-, guide- and strain-dependent features influencing antimicrobial activity. Nucleic Acids Res. 52, 6079–6091 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Ding, X. et al. Ultrasensitive and visual detection of SARS-CoV-2 using all-in-one dual CRISPR–Cas12a assay. Nat. Commun. 11, 4711 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Wang, J. Y. & Doudna, J. A. CRISPR technology: a decade of genome editing is only the beginning. Science 379, eadd8643 (2023).

    Article  PubMed  CAS  Google Scholar 

  151. Xin, C. et al. Comprehensive assessment of miniature CRISPR–Cas12f nucleases for gene disruption. Nat. Commun. 13, 5623 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Li, S. et al. Payload distribution and capacity of mRNA lipid nanoparticles. Nat. Commun. 13, 5561 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Villiger, L. et al. CRISPR technologies for genome, epigenome and transcriptome editing. Nat. Rev. Mol. Cell Biol. 25, 464–487 (2024).

    Article  PubMed  CAS  Google Scholar 

  154. Wong, C. UK first to approve CRISPR treatment for diseases: what you need to know. Nature 623, 676–677 (2023).

    Article  PubMed  CAS  Google Scholar 

  155. Longhurst, H. J. et al. CRISPR–Cas9 in vivo gene editing of KLKB1 for hereditary angioedema. N. Engl. J. Med. 390, 432–441 (2024).

    Article  PubMed  CAS  Google Scholar 

  156. O’Leary, K. Gene-editing breakthrough for a rare hereditary disorder. Nat. Med. https://doi.org/10.1038/d41591-024-00008-2 (2024).

  157. Chew, W. L. Immunity to CRISPR Cas9 and Cas12a therapeutics. Wiley Interdiscip. Rev. Syst. Biol. Med. 10, e1408 (2018).

  158. Wagner, D. L. et al. High prevalence of Streptococcus pyogenes Cas9-reactive T cells within the adult human population. Nat. Med. 25, 242–248 (2019).

    Article  PubMed  CAS  Google Scholar 

  159. Ferdosi, S. R. et al. Multifunctional CRISPR–Cas9 with engineered immunosilenced human T cell epitopes. Nat. Commun. 10, 1842 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).

    Article  PubMed  CAS  Google Scholar 

  161. Yang, H. & Patel, D. J. CasX: a new and small CRISPR gene-editing protein. Cell Res. 29, 345–346 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Carabias, A. et al. Structure of the mini-RNA-guided endonuclease CRISPR–Cas12j3. Nat. Commun. 12, 4476 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  163. Park, J. U. et al. Structural basis for target site selection in RNA-guided DNA transposition systems. Science 373, 768–774 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Urbaitis, T. et al. A new family of CRISPR-type V nucleases with C-rich PAM recognition. EMBO Rep. 23, e55481 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by research grants of the Dutch Research Council (NWO; BBOL-737.016.005, Spinoza SPI 93–537 and Gravitation 024.003.019) and the European Research Council (ERC-AdG-834279).

Author information

Authors and Affiliations

Authors

Contributions

W.Y.W., B.A.-P. and J.v.d.O. conceptualized the review and contributed to the writing of the manuscript. W.Y.W. and B.A.-P. prepared the visual elements, including figure and table design.

Corresponding authors

Correspondence to Wen Y. Wu or John van der Oost.

Ethics declarations

Competing interests

Several CRISPR–Cas-related patent applications have been filed related to this work, with J.v.d.O. and W.Y.W. as inventors. J.v.d.O. is cofounder and scientific adviser of NTrans Technologies and adviser of Scope Biosciences and Hudson River Biotechnology. B.A-P. declares no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Chase Beisel and Haoyi Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, W.Y., Adiego-Pérez, B. & van der Oost, J. Biology and applications of CRISPR–Cas12 and transposon-associated homologs. Nat Biotechnol 42, 1807–1821 (2024). https://doi.org/10.1038/s41587-024-02485-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-024-02485-9

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research