Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy

Abstract

Ionizable lipids are a key component of lipid nanoparticles, the leading nonviral messenger RNA delivery technology. Here, to advance the identification of ionizable lipids beyond current methods, which rely on experimental screening and/or rational design, we introduce lipid optimization using neural networks, a deep-learning strategy for ionizable lipid design. We created a dataset of >9,000 lipid nanoparticle activity measurements and used it to train a directed message-passing neural network for prediction of nucleic acid delivery with diverse lipid structures. Lipid optimization using neural networks predicted RNA delivery in vitro and in vivo and extrapolated to structures divergent from the training set. We evaluated 1.6 million lipids in silico and identified two structures, FO-32 and FO-35, with local mRNA delivery to the mouse muscle and nasal mucosa. FO-32 matched the state of the art for nebulized mRNA delivery to the mouse lung, and both FO-32 and FO-35 efficiently delivered mRNA to ferret lungs. Overall, this work shows the utility of deep learning for improving nanoparticle delivery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Workflow for LiON, DL-based LNP design.
Fig. 2: LiON for optimizing intravenous liver delivery of branched-ester-based library.
Fig. 3: Combining LiON with 4CR chemistry.
Fig. 4: Respiratory tract delivery.
Fig. 5: LNP delivery testing in ferret model.

Similar content being viewed by others

Data availability

All code and data used for training models can be found at GitHub via https://github.com/jswitten/LNP_ML (ref. 63). Source data are provided with this paper.

Code availability

All code and data used for training models can be found at GitHub via https://github.com/jswitten/LNP_ML (ref. 63).

References

  1. Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Barbier, A. J., Jiang, A. Y., Zhang, P., Wooster, R. & Anderson, D. G. The clinical progress of mRNA vaccines and immunotherapies. Nat. Biotechnol. 40, 840–854 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Witten, J., Hu, Y., Langer, R. & Anderson, D. G. Recent advances in nanoparticulate RNA delivery systems. Proc. Natl Acad. Sci. USA 121, e2307798120 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Baden, L. R. et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. N. Engl. J. Med. 384, 403–416 (2021).

    Article  CAS  PubMed  Google Scholar 

  6. Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Rothgangl, T. et al. In vivo adenine base editing of PCSK9 in macaques reduces LDL cholesterol levels. Nat. Biotechnol. 39, 949–957 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heymans, S. & Cooper, L. T. Myocarditis after COVID-19 mRNA vaccination: clinical observations and potential mechanisms. Nat. Rev. Cardiol. 19, 75–77 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. vander Straeten, A. et al. A microneedle vaccine printer for thermostable COVID-19 mRNA vaccines. Nat. Biotechnol. 42, 510–517 (2024).

    Article  CAS  PubMed  Google Scholar 

  10. Muramatsu, H. et al. Lyophilization provides long-term stability for a lipid nanoparticle-formulated, nucleoside-modified mRNA vaccine. Mol. Ther. 30, 1941–1951 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Loughrey, D. & Dahlman, J. E. Non-liver mRNA delivery. Acc. Chem. Res. 55, 13–23 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Hodges, C. A. & Conlon, R. A. Delivering on the promise of gene editing for cystic fibrosis. Genes Dis. 6, 97–108 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Ensinck, M., Mottais, A., Detry, C., Leal, T. & Carlon, M. S. On the corner of models and cure: gene editing in cystic fibrosis. Front. Pharmacol. 12, 662110 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Choi, S. H. & Engelhardt, J. F. Gene therapy for cystic fibrosis: lessons learned and paths forward. Mol. Ther. 29, 428–430 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Miao, L. et al. Delivery of mRNA vaccines with heterocyclic lipids increases anti-tumor efficacy by STING-mediated immune cell activation. Nat. Biotechnol. 37, 1174–1185 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Ruigrok, M. J. R., Frijlink, H. W., Melgert, B. N., Olinga, P. & Hinrichs, W. L. J. Gene therapy strategies for idiopathic pulmonary fibrosis: recent advances, current challenges, and future directions. Mol. Ther. Methods Clin. Dev. 20, 483–496 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bai, X. et al. Inhaled siRNA nanoparticles targeting IL11 inhibit lung fibrosis and improve pulmonary function post-bleomycin challenge. Sci. Adv. 8, eabn7162 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang, R. et al. Inhaled mRNA nanoformulation with biogenic ribosomal protein reverses established pulmonary fibrosis in a bleomycin-induced murine model. Adv. Mater. 34, e2107506 (2022).

    Article  PubMed  Google Scholar 

  19. Guan, S., Darmstädter, M., Xu, C. & Rosenecker, J. In vitro investigations on optimizing and nebulization of IVT-mRNA formulations for potential pulmonary-based alpha-1-antitrypsin deficiency treatment. Pharmaceutics 13, 1281 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu, D.-D. et al. The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach. Pharmacol. Ther. 182, 1–14 (2018).

    Article  CAS  PubMed  Google Scholar 

  21. Woo, C. J. et al. Inhaled delivery of a lipid nanoparticle encapsulated messenger RNA encoding a ciliary protein for the treatment of primary ciliary dyskinesia. Pulm. Pharmacol. Ther. 75, 102134 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. da Silva, A. L. et al. Nanoparticle-based thymulin gene therapy therapeutically reverses key pathology of experimental allergic asthma. Sci. Adv. 6, eaay7973 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zeyer, F. et al. mRNA-mediated gene supplementation of Toll-like receptors as treatment strategy for asthma in vivo. PLoS ONE 11, e0154001 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hashiba, K. et al. Branching ionizable lipids can enhance the stability, fusogenicity, and functional delivery of mRNA. Small Sci. 3, 2370001 (2023).

    Article  Google Scholar 

  26. Lam, K. et al. Unsaturated, trialkyl ionizable lipids are versatile LNP components for therapeutic and vaccine applications. Adv. Mater. 35, 2209624 (2023).

    Article  CAS  Google Scholar 

  27. Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun. 5, 4277 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Li, B. et al. Accelerating ionizable lipid discovery for mRNA delivery using machine learning and combinatorial chemistry. Nat. Mater. 23, 1002–1008 (2024).

    Article  CAS  PubMed  Google Scholar 

  29. Stokes, J. M. et al. A deep learning approach to antibiotic discovery. Cell 180, 688–702.e13 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang, K. et al. Analyzing learned molecular representations for property prediction. J. Chem. Inf. Model. 59, 3370–3388 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soleimany, A. P. et al. Evidential deep learning for guided molecular property prediction and discovery. ACS Cent. Sci. 7, 1356–1367 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Reker, D. et al. Computationally guided high-throughput design of self-assembling drug nanoparticles. Nat. Nanotechnol. 16, 725–733 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu, G. et al. Deep learning-guided discovery of an antibiotic targeting Acinetobacter baumannii. Nat. Chem. Biol. 19, 1342–1350 (2023).

    Article  CAS  PubMed  Google Scholar 

  34. Wong, F. et al. Discovery of a structural class of antibiotics with explainable deep learning. Nature 626, 177–185 (2024).

    Article  CAS  PubMed  Google Scholar 

  35. Rhym, L. H., Manan, R. S., Koller, A., Stephanie, G. & Anderson, D. G. Peptide-encoding mRNA barcodes for the high-throughput in vivo screening of libraries of lipid nanoparticles for mRNA delivery. Nat. Biomed. Eng. 7, 901–910 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Ryan, K. A. et al. Dose-dependent response to infection with SARS-CoV-2 in the ferret model and evidence of protective immunity. Nat. Commun. 12, 81 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rosen, B. H. et al. Animal and model systems for studying cystic fibrosis. J. Cyst. Fibros. 17, S28–S34 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Yuan, F. et al. Transgenic ferret models define pulmonary ionocyte diversity and function. Nature 621, 857–867 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rotolo, L. et al. Species-agnostic polymeric formulations for inhalable messenger RNA delivery to the lung. Nat. Mater. 22, 369–379 (2023).

    Article  CAS  PubMed  Google Scholar 

  40. Boucher, R. C. Muco-obstructive lung diseases. N. Engl. J. Med. 380, 1941–1953 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Li, B. et al. Enhancing the immunogenicity of lipid-nanoparticle mRNA vaccines by adjuvanting the ionizable lipid and the mRNA. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01082-6 (2023).

  42. Jiang, A. Y. et al. Combinatorial development of nebulized mRNA delivery formulations for the lungs. Nat. Nanotechnol. 19, 364–375 (2024).

    Article  CAS  PubMed  Google Scholar 

  43. Miller, J. B. et al. Non-viral CRISPR/Cas gene editing in vitro and in vivo enabled by synthetic nanoparticle co-delivery of Cas9 mRNA and sgRNA. Angew. Chem. Int. Ed. 56, 1059–1063 (2017).

    Article  CAS  Google Scholar 

  44. Zhou, K. et al. Modular degradable dendrimers enable small RNAs to extend survival in an aggressive liver cancer model. Proc. Natl Acad. Sci. USA 113, 520–525 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Li, B. et al. Combinatorial design of nanoparticles for pulmonary mRNA delivery and genome editing. Nat. Biotechnol. 41, 1410–1415 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol. 26, 561–569 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, S. M. et al. A systematic study of unsaturation in lipid nanoparticles leads to improved mRNA transfection in vivo. Angew. Chem. 133, 5912–5917 (2021).

    Article  Google Scholar 

  49. Li, L. et al. A biomimetic lipid library for gene delivery through thiol-yne click chemistry. Biomaterials 33, 8160–8166 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Heid, E. et al. Chemprop: a machine learning package for chemical property prediction. J. Chem. Inf. Model. 64, 9–17 (2024).

    Article  CAS  PubMed  Google Scholar 

  51. Wu, Z. et al. MoleculeNet: a benchmark for molecular machine learning. Chem. Sci. 9, 513–530 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. He, Z. et al. A multidimensional approach to modulating ionizable lipids for high-performing and organ-selective mRNA delivery. Angew. Chem. Int. Ed. 62, e202310401 (2023).

    Article  CAS  Google Scholar 

  53. Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Gilleron, J. et al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol. 31, 638–646 (2013).

    Article  CAS  PubMed  Google Scholar 

  55. Carrasco, M. J. et al. Ionization and structural properties of mRNA lipid nanoparticles influence expression in intramuscular and intravascular administration. Commun. Biol. 4, 956 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fischer, A. J. et al. Mucus strands from submucosal glands initiate mucociliary transport of large particles. JCI Insight 4, e124863 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ostedgaard, L. S. et al. Lack of airway submucosal glands impairs respiratory host defenses. eLife 9, e59653 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Tata, P. R. & Rajagopal, J. Plasticity in the lung: making and breaking cell identity. Development 144, 755–766 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shah, V. S., Chivukula, R. R., Lin, B., Waghray, A. & Rajagopal, J. Cystic fibrosis and the cells of the airway epithelium: what are ionocytes and what do they do? Annu. Rev. Pathol. Mech. Dis. 17, 23–46 (2022).

    Article  CAS  Google Scholar 

  61. Bajusz, D., Rácz, A. & Héberger, K. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations? J. Cheminform. 7, 20 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Miao, L. et al. Synergistic lipid compositions for albumin receptor mediated delivery of mRNA to the liver. Nat. Commun. 11, 2424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Witten, J. & Collins, E. LNP ML. GitHub https://github.com/jswitten/LNP_ML (2024).

  64. Guo, Z. et al. Diffusion models in bioinformatics and computational biology. Nat. Rev. Bioeng. 2, 136–154 (2024).

    Article  CAS  PubMed  Google Scholar 

  65. Reverberi, C. et al. Experimental evidence of effective human–AI collaboration in medical decision-making. Sci. Rep. 12, 14952 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu, Y., Golubovic, A., Xu, S., Pan, A. & Li, B. Rational design and combinatorial chemistry of ionizable lipids for RNA delivery. J. Mater. Chem. B 11, 6527–6539 (2023).

    Article  CAS  PubMed  Google Scholar 

  67. Du, S. et al. Cholesterol-amino-phosphate (CAP) derived lipid nanoparticles for delivery of self-amplifying RNA and restoration of spermatogenesis in infertile mice. Adv. Sci. 10, 2300188 (2023).

    Article  CAS  Google Scholar 

  68. Andries, O. et al. Comparison of the gene transfer efficiency of mRNA/GL67 and pDNA/GL67 complexes in respiratory cells. Mol. Pharm. 9, 2136–2145 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 41–46 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Oyama, R. et al. An ionizable lipid material with a vitamin E scaffold as an mRNA vaccine platform for efficient cytotoxic T cell responses. ACS Nano 17, 18758–18774 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Goldman, R. L. et al. Understanding structure activity relationships of good HEPES lipids for lipid nanoparticle mRNA vaccine applications. Biomaterials 301, 122243 (2023).

    Article  CAS  PubMed  Google Scholar 

  72. Yan, Z., McCray, P. B. Jr & Engelhardt, J. F. Advances in gene therapy for cystic fibrosis lung disease. Hum. Mol. Genet. 28, R88–R94 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lee, J.-A. et al. Gene therapy for cystic fibrosis: new tools for precision medicine. J. Transl. Med. 19, 452 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Boucher, R. C. Status of gene therapy for cystic fibrosis lung disease. J. Clin. Invest. 103, 441–445 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ulrich, M. et al. Alveolar inflammation in cystic fibrosis. J. Cyst. Fibros. 9, 217–227 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lin, C.-R., Bahmed, K. & Kosmider, B. Impaired alveolar re-epithelialization in pulmonary emphysema. Cells 11, 2055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, D. et al. Rapid discovery of potent siRNA-containing lipid nanoparticles enabled by controlled microfluidic formulation. J. Am. Chem. Soc. 134, 6948–6951 (2012).

    Article  CAS  PubMed  Google Scholar 

  78. Ferguson, L. T. et al. Mechanisms by which liposomes improve inhaled drug delivery for alveolar diseases. Adv. NanoBiomed Res. 3, 2200106 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yu, M. et al. Highly efficient transgenesis in ferrets using CRISPR/Cas9-mediated homology-independent insertion at the ROSA26 locus. Sci. Rep. 9, 1971 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Tang, Y. et al. Repeat dosing of AAV2.5T to ferret lungs elicits an antibody response that diminishes transduction in an age-dependent manner. Mol. Ther. Methods Clin. Dev. 19, 186–200 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Tang, Y. et al. Immunosuppression reduces rAAV2.5T neutralizing antibodies that limit efficacy following repeat dosing to ferret lungs. Mol. Ther. Methods Clin. Dev. 29, 70–80 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Sanofi and the National Institutes of Health (grant no. HL162564-02 and R61AI161805 to D.G.A. and grants no. HL152960, DK054759 and 75N92019C00010 to J.F.E.). It was also funded in part by a grant from the Alpha-1 Foundation. J.W. was supported by the Cystic Fibrosis Foundation awards WITTEN19XX0 and 004831F5222 and the Convergence Scholars Program through the Marble Center for Cancer Nanomedicine. This work was supported in part by the Koch Institute support grant 5P30-CA14051 from the National Cancer Institute. We thank the Koch Institute’s Robert A. Swanson (1969) Biotechnology Center for technical support, specifically the Animal Imaging and Preclinical Testing, Flow Cytometry, and Peterson (1957) Nanotechnology Materials core facilities.

Author information

Authors and Affiliations

Authors

Contributions

J.W., I.R., R.S.M., E.B., S.B., Y.T., M.E., J.L., D.N., F.O., A.Y.J., E.M., Y.H., H.M., A.S., E.C., Z.Y. and J.F.E. performed experiments and analyzed data. J.W., R.L. and D.G.A. discussed the results and wrote the paper with input from all authors. R.L. and D.G.A. acquired funding and supervised the project. J.W., I.R. and R.S.M. contributed equally and all reserve the right to list themselves first on their curricula vitae (CVs).

Corresponding author

Correspondence to Daniel G. Anderson.

Ethics declarations

Competing interests

J.W., I.R. and D.G.A. have filed a patent for the 4CR ketone biodegradable lipid library described herein and J.W., R.S.M. and D.G.A. have filed a patent for the branched-ester library described herein. Z.Y. and J.F.E. are consultants for Spirovant Sciences. D.G.A. receives research funding from Sanofi/Translate Bio and is a Founder of oRNA Tx. R.L. is a co-founder and board of director of Moderna. He also serves on the board and has equity in Particles For Humanity. For a list of entities with which R.L. is, or has been recently involved compensated or uncompensated, see https://www.dropbox.com/s/yc3xqb5s8s94v7x/Rev%20Langer%20COI.pdf?dl=0. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Yizhou Dong, Ho Lun Wong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–28, Tables 1–7 and lipid synthesis protocols.

Reporting Summary

Supplementary Data 1

Source data for Supplementary Information.

Source data

Source Data Figs. 1–4

Statistical source data for Figs. 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Witten, J., Raji, I., Manan, R.S. et al. Artificial intelligence-guided design of lipid nanoparticles for pulmonary gene therapy. Nat Biotechnol (2024). https://doi.org/10.1038/s41587-024-02490-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-024-02490-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research