Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Electro-microbial production techno-economic viability and environmental implications

Producing goods, such as foods and fuels, with minimal environmental impacts is urgently needed. Although advances in bioproduction are promising, there is often a noticeable gap in our understanding of whether and where new processes can compete with existing methods on an economic and environmental basis. Transparent lower bound calculations from basic principles highlight potential benefits of producing foods, but not fuels, from electro-microbial production of biomass.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Summary of electro-microbial production of goods and associated costs (red) and benefits (green) in dollars per kilogram of dry microbial biomass.
Fig. 2: Summary of the greenhouse gas, land use and blue water consumption impacts of producing unprocessed microbial biomass compared with current foods and fuels on a mass basis.

Data availability

The data used here are summarized in Supplementary Table 2 and can be found in the GitLab repository provided with this manuscript (https://gitlab.com/milo-lab-public/microbial-production-tea.git), together with details of data processing.

Code availability

The code used for the analysis has been deposited into GitLab (https://gitlab.com/milo-lab-public/microbial-production-tea.git).

References

  1. Järviö, N., Maljanen, N.-L., Kobayashi, Y., Ryynänen, T. & Tuomisto, H. L. Sci. Total Environ. 776, 145764 (2021).

    Article  PubMed  Google Scholar 

  2. Graham, A. E. & Ledesma-Amaro, R. Nat. Commun. 14, 2231 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Keasling, J. et al. Nat. Rev. Microbiol. 19, 701–715 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Al Rowaihi, I. S. et al. PLoS One 13, e0196079 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pham, J. V. et al. Front. Microbiol. 10, 1404 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Poore, J. & Nemecek, T. Science 360, 987–992 (2018).

    Article  CAS  PubMed  Google Scholar 

  7. International Energy Agency. From taking stock to taking action: how to implement the COP28 energy goals. https://www.iea.org/reports/from-taking-stock-to-taking-action (2024).

  8. Claassens, N. J., Cotton, C. A. R., Kopljar, D. & Bar-Even, A. Nat. Catal. 2, 437–447 (2019).

    Article  CAS  Google Scholar 

  9. Leger, D. et al. Proc. Natl. Acad. Sci. USA 118, e2015025118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Way, R., Ives, M. C., Mealy, P. & Farmer, J. D. Joule 6, 2057–2082 (2022).

    Article  Google Scholar 

  11. García Martínez, J. B. et al. Sustain. Prod. Consum. 25, 234–247 (2021).

    Article  PubMed  Google Scholar 

  12. World Integrated Trade Solution. Inactive yeasts; other single-cell micro-organi exports by country in 2023. https://wits.worldbank.org/trade/comtrade/en/country/ALL/year/2021/tradeflow/Exports/partner/WLD/product/210220 (World Bank, accessed 12 August 2024).

  13. World Bank. World Bank commodity price data (the Pink Sheet). https://www.worldbank.org/en/research/commodity-markets (accessed 21 January 2025).

  14. Fagerbakke, K. M., Heldal, M. & Norland, S. Aquat. Microb. Ecol. 10, 15–27 (1996).

    Article  Google Scholar 

  15. Amadei, A. M., De Laurentiis, V. & Sala, S. J. Clean. Prod. 329, 129668 (2021).

    Article  Google Scholar 

  16. Nappa, M. et al. ACS Omega 5, 33242–33252 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Finnigan, T., Needham, L. & Abbott, C. in Sustainable Protein Sources (eds. Nadathur, S. R., Wanasundara, J. P. D. & Scanlin, L.) 305–325 (Academic, 2017); https://doi.org/10.1016/B978-0-12-802778-3.00019-6

  18. Biddy, M. J., Scarlata, C. & Kinchin, C. Chemicals from biomass: a market assessment of bioproducts with near-term potential. https://doi.org/10.2172/1244312 (National Renewable Energy Laboratory, 2016).

  19. Gautam, M. et al. Repurposing agricultural policies and support: options to transform agriculture and food systems to better serve the health of people, economies, and the planet. http://hdl.handle.net/10986/36875 (World Bank Group, 2022).

  20. Alexander, P. et al. Agric. Syst. 153, 190–200 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Food and Agriculture Organization of the United Nations. Gross domestic product and agriculture value added 2012–2021: global and regional trends. https://doi.org/10.4060/cc5253en (2023).

  22. United Nations Economic Commission for Europe. Carbon Neutrality in the UNECE Region: Integrated Life-cycle Assessment of Electricity Sources (United Nations, 2022); https://doi.org/10.18356/9789210014854

  23. Hertwich, E. G. et al. Proc. Natl. Acad. Sci. USA 112, 6277–6282 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Jin, Y., Behrens, P., Tukker, A. & Scherer, L. Renew. Sustain. Energy Rev. 115, 109391 (2019).

    Article  Google Scholar 

  25. Hiete, M., Berner, U. & Richter, O. Glob. Biogeochem. Cycles 15, 169–181 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Lior Greenspoon, Gidon Eshel, Tamar Makov, Silvio Matassa, Charlie Cotton, Jan Lukas Krüsemann, Niklas Stolz, Yuval Rosenberg, William Newell, Milena Ivanisevic and the many other people we spoke with for their invaluable insights and support on this manuscript. This research was supported by the Tom and Mary Beck Center for Renewable Energy as part of the Institute for Environmental Sustainability (IES) at the Weizmann Institute of Science. R.M. holds the Charles and Louise Gartner Professorial Chair.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Milo.

Ethics declarations

Competing interests

R.B.-N., E.N. and R.M are inventors on patent applications related to microbial production. D.L. is the co-founder of Cx Bio. The other authors declare no competing interests.

Supplementary information

Supplementary Information

Supplementary Texts 1–5, Figs. 1–4, Tables 1 and 2, and References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lovat, S.J., Ben-Nissan, R., Milshtein, E. et al. Electro-microbial production techno-economic viability and environmental implications. Nat Biotechnol 43, 848–853 (2025). https://doi.org/10.1038/s41587-025-02632-w

Download citation

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-025-02632-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research