Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Efficient mitochondrial A-to-G base editors for the generation of mitochondrial disease models

Abstract

Existing A-to-G base editors for mitochondrial DNA (mtDNA) are limited by low efficiency. We used directed evolution to discover variants of the TadA-8e base editors that have substantially increased activity and expanded targeting compatibility for both nuclear and mitochondrial adenine base editing, especially in previously unfavored sequence contexts. The engineered mtDNA editors (eTd-mtABEs) showed up to 87% editing efficiency in human cells, with greatly reduced DNA and RNA off-target effects. Strand-selective A-to-G editing was enhanced by an average of 3.2-fold with substitution of DddA to DNA nickases in eTd-mtABE backbones compared to mitochondrial ABEs. In rat cells, editing efficiencies of eTd-mtABEs were up to 145-fold higher compared to split DddA transcription activator-like effector-linked deaminase. We also generated rats with sensorineural hearing loss by installing targeted mutations with frequencies of up to 44% through embryonic injection. The developed eTd-mtABEs are efficient and precise mtDNA-engineering tools for basic research and translational studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Protein engineering of adenine deaminases in CRISPR-based ABEs.
Fig. 2: Characterization of enhanced CRISPR-derived ABEs.
Fig. 3: Evolved TadA variants improve A•T-to-G•C editing in mtDNA.
Fig. 4: TadA variants enhanced specificity of eTd-mtABE and strand-biased mtDNA editing.
Fig. 5: Application of eTd-mtABEs to install pathogenic mutations in human cells.
Fig. 6: Mitochondrial disease models generated by eTd-mtABEs in rats.

Similar content being viewed by others

Data availability

HTS data were deposited to the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) database under BioProjects PRJNA1249660, PRJNA1249952 and PRJNA1249944. Mitochondrial WGS data were deposited to the NCBI SRA database under BioProject PRJNA1249252. There are no restrictions on data availability. Source data are provided with this paper.

References

  1. Wallace, D. C. Mitochondrial genetic medicine. Nat. Genet. 50, 1642–1649 (2018).

    Article  CAS  PubMed  Google Scholar 

  2. Kim, J. S. & Chen, J. Base editing of organellar DNA with programmable deaminases. Nat. Rev. Mol. Cell Biol. 25, 34–45 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Cho, S. I. et al. Targeted A-to-G base editing in human mitochondrial DNA with programmable deaminases. Cell 185, 1764–177 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Li, G. et al. Gene editing and its applications in biomedicine. Sci. China Life Sci. 65, 660–700 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Silva-Pinheiro, P. & Minczuk, M. The potential of mitochondrial genome engineering. Nat. Rev. Genet. 23, 199–214 (2022).

    Article  CAS  PubMed  Google Scholar 

  6. Stewart, J. B. Current progress with mammalian models of mitochondrial DNA disease. J. Inherit. Metab. Dis. 44, 325–342 (2021).

    Article  CAS  PubMed  Google Scholar 

  7. Russell, O. M., Gorman, G. S., Lightowlers, R. N. & Turnbull, D. M. Mitochondrial diseases: hope for the future. Cell 181, 168–188 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Bayona-Bafaluy, M. P., Blits, B., Battersby, B. J., Shoubridge, E. A. & Moraes, C. T. Rapid directional shift of mitochondrial DNA heteroplasmy in animal tissues by a mitochondrially targeted restriction endonuclease. Proc. Natl Acad. Sci. USA 102, 14392–14397 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gammage, P. A. et al. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 24, 1691–1695 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bacman, S. R. et al. MitoTALEN reduces mutant mtDNA load and restores tRNAAla levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 24, 1696–1700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zekonyte, U. et al. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat. Commun. 12, 3210 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rees, H. A. & Liu, D. R. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19, 770–788 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mok, B. Y. et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 583, 631–637 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Huang, J. et al. Discovery of deaminase functions by structure-based protein clustering. Cell 186, 3182–3195 (2023).

    Article  CAS  PubMed  Google Scholar 

  15. Mi, L. et al. DddA homolog search and engineering expand sequence compatibility of mitochondrial base editing. Nat. Commun. 14, 874 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo, J. et al. A DddA ortholog-based and transactivator-assisted nuclear and mitochondrial cytosine base editors with expanded target compatibility. Mol. Cell 83, 1710–1724 (2023).

    Article  CAS  PubMed  Google Scholar 

  17. Sun, H. et al. Developing mitochondrial base editors with diverse context compatibility and high fidelity via saturated spacer library. Nat. Commun. 14, 6625 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lim, K., Cho, S. I. & Kim, J. S. Nuclear and mitochondrial DNA editing in human cells with zinc finger deaminases. Nat. Commun. 13, 366 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Willis, J. C. W., Silva-Pinheiro, P., Widdup, L., Minczuk, M. & Liu, D. R. Compact zinc finger base editors that edit mitochondrial or nuclear DNA in vitro and in vivo. Nat. Commun. 13, 7204 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, S., Lee, H., Baek, G. & Kim, J. S. Precision mitochondrial DNA editing with high-fidelity DddA-derived base editors. Nat. Biotechnol. 41, 378–386 (2023).

    Article  CAS  PubMed  Google Scholar 

  21. Phan, H. T. L., Lee, H. & Kim, K. Trends and prospects in mitochondrial genome editing. Exp. Mol. Med. 55, 871–878 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yi, Z. et al. Strand-selective base editing of human mitochondrial DNA using mitoBEs. Nat. Biotechnol. 42, 498–509 (2024).

    Article  CAS  PubMed  Google Scholar 

  23. Hu, J. et al. Strand-preferred base editing of organellar and nuclear genomes using CyDENT. Nat. Biotechnol. 42, 936–945 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Cho, S. I. et al. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA. Cell 187, 95–109 (2024).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, X. et al. Precise modelling of mitochondrial diseases using optimized mitoBEs. Nature 639, 735–745 (2025).

    Article  CAS  PubMed  Google Scholar 

  26. Fan, Y. et al. Leveraging base excision repair for efficient adenine base editing of mitochondrial DNA. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02608-w (2025).

    Article  PubMed  Google Scholar 

  27. Gorman, G. S. et al. Mitochondrial diseases. Nat. Rev. Dis. Primers 2, 16080 (2016).

    Article  PubMed  Google Scholar 

  28. Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, C. et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis. Nature 571, 275–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  30. Grunewald, J. et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities. Nat. Biotechnol. 37, 1041–1048 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rees, H. A., Wilson, C., Doman, J. L. & Liu, D. R. Analysis and minimization of cellular RNA editing by DNA adenine base editors. Sci. Adv. 5, eaax5717 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Richter, M. F. et al. Phage-assisted evolution of an adenine base editor with improved Cas domain compatibility and activity. Nat. Biotechnol. 38, 883–891 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaudelli, N. M. et al. Directed evolution of adenine base editors with increased activity and therapeutic application. Nat. Biotechnol. 38, 892–900 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Chen, L. et al. Re-engineering the adenine deaminase TadA-8e for efficient and specific CRISPR-based cytosine base editing. Nat. Biotechnol. 41, 663–672 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Chen, L. et al. Engineering a precise adenine base editor with minimal bystander editing. Nat. Chem. Biol. 19, 101–110 (2023).

    Article  CAS  PubMed  Google Scholar 

  36. Jeong, Y. K. et al. Adenine base editor engineering reduces editing of bystander cytosines. Nat. Biotechnol. 39, 1426–1433 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. Tu, T. et al. A precise and efficient adenine base editor. Mol. Ther. 30, 2933–2941 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lapinaite, A. et al. DNA capture by a CRISPR-Cas9-guided adenine base editor. Science 369, 566–571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Arbab, M. et al. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell 182, 463–480 e430 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim, H. S., Jeong, Y. K., Hur, J. K., Kim, J. S. & Bae, S. Adenine base editors catalyze cytosine conversions in human cells. Nat. Biotechnol. 37, 1145–1148 (2019).

    Article  CAS  PubMed  Google Scholar 

  41. Mok, B. Y. et al. CRISPR-free base editors with enhanced activity and expanded targeting scope in mitochondrial and nuclear DNA. Nat. Biotechnol. 40, 1378–1387 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bacman, S. R. et al. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 19, 1111–1113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yan, D. et al. High-efficiency and multiplex adenine base editing in plants using new TadA variants. Mol. Plant 14, 722–731 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Catarino, C. B. et al. Characterization of a Leber’s hereditary optic neuropathy (LHON) family harboring two primary LHON mutations m.11778G>A and m.14484T>C of the mitochondrial DNA. Mitochondrion 36, 15–20 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Macmillan, C. et al. Pedigree analysis of French Canadian families with T14484C Leber’s hereditary optic neuropathy. Neurology 50, 417–422 (1998).

    Article  CAS  PubMed  Google Scholar 

  46. Thorburn, D. R., Rahman, J., and Rahman, S. Mitochondrial DNA-Associated Leigh Syndrome and NARP. In GeneReviews((R)), M. P. Adam, J. Feldman, G. M. Mirzaa, R. A. Pagon, S. E. Wallace, L. J. H. Bean, K. W. Gripp, and A. Amemiya, eds. (1993).

  47. Khoo, A. et al. Progressive myoclonic epilepsy due to rare mitochondrial ND6 mutation, m.14487T>C. BMJ Neurol. Open 3, e000180 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Becker, S. & Boch, J. TALE and TALEN genome editing technologies. Gene and Genome Editing 2, 100007 (2021).

    Article  CAS  Google Scholar 

  49. Kytovuori, L., Gardberg, M., Majamaa, K. & Martikainen, M. H. The m.7510T>C mutation: Hearing impairment and a complex neurologic phenotype. Brain Behav. 7, e00859 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mutai, H., Watabe, T., Kosaki, K., Ogawa, K. & Matsunaga, T. Mitochondrial mutations in maternally inherited hearing loss. BMC Med. Genet 18, 32 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ding, Y. et al. The role of mitochondrial DNA mutations in hearing loss. Biochem. Genet. 51, 7–8 (2013).

    Article  Google Scholar 

  52. Xiao, Y. L., Wu, Y. & Tang, W. An adenine base editor variant expands context compatibility. Nat. Biotechnol. 42, 1442–1453 (2024).

    Article  CAS  PubMed  Google Scholar 

  53. Jiang, F. & Doudna, J. A. CRISPR-Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 46, 505–529 (2017).

    Article  CAS  PubMed  Google Scholar 

  54. Yin, L., Shi, K. & Aihara, H. Structural basis of sequence-specific cytosine deamination by double-stranded DNA deaminase toxin DddA. Nat. Struct. Mol. Biol. 30, 1153–1159 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chen, L. et al. A mitochondrial disease model is generated and corrected using engineered base editors in rat zygotes. Nat. Biotechnol. https://doi.org/10.1038/s41587-025-02684-y (2025).

  57. Chen, L. et al. Adenine transversion editors enable precise, efficient A•T-to-C•G base editing in mammalian cells and embryos. Nat. Biotechnol. 42, 638–650 (2024).

    Article  CAS  PubMed  Google Scholar 

  58. Zhang, X. et al. Increasing the efficiency and targeting range of cytidine base editors through fusion of a single-stranded DNA-binding protein domain. Nat. Cell Biol. 22, 740–750 (2020).

    Article  CAS  PubMed  Google Scholar 

  59. Chen, Y. et al. Generation of obese rat model by transcription activator-like effector nucleases targeting the leptin receptor gene. Sci. China Life Sci. 60, 152–157 (2017).

    Article  CAS  PubMed  Google Scholar 

  60. Cheng, Y. et al. Degraded cortical temporal processing in the valproic acid-induced rat model of autism. Neuropharmacology 209, 109000 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Hwang, G. H. et al. Web-based design and analysis tools for CRISPR base editing. BMC Bioinformatics 19, 542 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Y. Zhang from the Flow Cytometry Core Facility of School of Life Sciences at ECNU and acknowledge the support from the ECNU public platform for innovation (011). We thank L. Ji (HAVAS) for designing schematic diagrams. This work was partially supported by grants from the National Natural Science Foundation of China (32025023, 32230064 and 32311530111 to D.L.; 31930016 to W.W.; 82230002 to M.L.), National Key R&D Program of China (2024YFC3407900 to L.C.; 2023YFC3403400 to D.L.), Shanghai Municipal Commission for Science and Technology (21JC1402200 and 24J22800400 to D.L.), Young Elite Scientist Sponsorship Program by China Association for Science and Technology (2023QNRC001 to L.C.), Shanghai Oriental Talent Plan (QNZH2024131 to L.C.), Fellowship of China Postdoctoral Science Foundation (8206400139 to Z.Y.) and Lingang Laboratory. D.L. is a Shanghai Academy of Natural Sciences exploration scholar.

Author information

Authors and Affiliations

Authors

Contributions

L.C. and D.L. designed the experiments. L.C., M.H., C.L., M.Y., Y.W., X.G., Y.F., H.H., X.D., H.G., X.C. and L.G. performed the experiments. L.C., M.H., C.L., M.Y., X.G., Y.F., H.H., X.D., D.Z., D.M., M.H., Z.Y., M.L., G.S., X.Z., W.W. and D.L. analyzed the data. L.C. and D.L. wrote the manuscript with input from all authors. L.C. and D.L. supervised the research.

Corresponding authors

Correspondence to Liang Chen or Dali Li.

Ethics declarations

Competing interests

The authors have submitted patent applications based on the results reported in this study (L.C., D.L., M.H. and C.L.). The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7 and Note.

Reporting Summary

Supplementary Tables 1–3

Primer sequences used in this study, target sites used in this study and general architecture and DNA or amino acid sequences of plasmids used in this study.

Supplementary Data 1–7

Source data for Supplementary Figs. 1–7.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Hong, M., Luan, C. et al. Efficient mitochondrial A-to-G base editors for the generation of mitochondrial disease models. Nat Biotechnol (2025). https://doi.org/10.1038/s41587-025-02685-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41587-025-02685-x

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research