Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics

An Author Correction to this article was published on 19 July 2019

This article has been updated

Abstract

Group A Streptococcus (GAS; Streptococcus pyogenes) is a bacterial pathogen for which a commercial vaccine for humans is not available. Employing the advantages of high-throughput DNA sequencing technology to vaccine design, we have analyzed 2,083 globally sampled GAS genomes. The global GAS population structure reveals extensive genomic heterogeneity driven by homologous recombination and overlaid with high levels of accessory gene plasticity. We identified the existence of more than 290 clinically associated genomic phylogroups across 22 countries, highlighting challenges in designing vaccines of global utility. To determine vaccine candidate coverage, we investigated all of the previously described GAS candidate antigens for gene carriage and gene sequence heterogeneity. Only 15 of 28 vaccine antigen candidates were found to have both low naturally occurring sequence variation and high (>99%) coverage across this diverse GAS population. This technological platform for vaccine coverage determination is equally applicable to prospective GAS vaccine antigens identified in future studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Population structure and pangenome of the 2,083 globally distributed GAS strains.
Fig. 2: Antigenic variation within vaccine targets from the 2,083 GAS genomes.
Fig. 3: Global amino acid variation mapped onto the protein crystal structure of the mature GAS streptolysin O and C5a peptidase.

Similar content being viewed by others

Data availability

Illumina sequence reads and draft genome assemblies were deposited to the European Nucleotide Archive under the accession numbers specified in Supplementary Table 2. GenBank accession numbers for the 30 new GAS reference genomes are provided in Supplementary Table 5. To facilitate community accessibility and interrogation of the data presented in this study, the phylogenetic tree (Fig. 1a), PopPUNK phylogroup designations and associated metadata components have been uploaded to the interactive web interface Microreact66 (https://microreact.org/project/5DEFpeck4). The PopPUNK database for assigning new genomes is available at https://doi.org/10.6084/m9.figshare.6931439.v1.

Code availability

The script for assessing antigenic variation from genome assemblies, as used in this study, is available at https://github.com/shimbalama/screen_assembly.

Change history

  • 19 July 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis. 5, 685–694 (2005).

    PubMed  Google Scholar 

  2. Walker, M. J. et al. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin. Microbiol. Rev. 27, 264–301 (2014).

    PubMed  PubMed Central  Google Scholar 

  3. Watkins, D. A. et al. Global, regional, and national burden of rheumatic heart disease, 1990–2015. N. Engl. J. Med. 377, 713–722 (2017).

    PubMed  Google Scholar 

  4. Henningham, A., Gillen, C. M. & Walker, M. J. Group A streptococcal vaccine candidates: potential for the development of a human vaccine. Curr. Top. Microbiol. Immunol. 368, 207–242 (2013).

    CAS  PubMed  Google Scholar 

  5. Kotloff, K. L. et al. Safety and immunogenicity of a recombinant multivalent group A streptococcal vaccine in healthy adults: phase 1 trial. J. Am. Med. Assoc. 292, 709–715 (2004).

    CAS  Google Scholar 

  6. McNeil, S. A. et al. Safety and immunogenicity of 26-valent group A Streptococcus vaccine in healthy adult volunteers. Clin. Infect. Dis. 41, 1114–1122 (2005).

    CAS  PubMed  Google Scholar 

  7. Brandt, E. R. et al. New multi-determinant strategy for a group A streptococcal vaccine designed for the Australian Aboriginal population. Nat. Med. 6, 455–459 (2000).

    CAS  PubMed  Google Scholar 

  8. Sabharwal, H. et al. Group A Streptococcus (GAS) carbohydrate as an immunogen for protection against GAS infection. J. Infect. Dis. 193, 129–135 (2006).

    CAS  PubMed  Google Scholar 

  9. Van Sorge, N. M. et al. The classical lancefield antigen of group A Streptococcus is a virulence determinant with implications for vaccine design. Cell Host Microbe 15, 729–740 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Henningham, A. et al. Conserved anchorless surface proteins as group A streptococcal vaccine candidates. J. Mol. Med. (Berl.) 90, 1197–1207 (2012).

    CAS  Google Scholar 

  11. Valentin-Weigand, P., Talay, S. R., Kaufhold, A., Timmis, K. N. & Chhatwal, G. S. The fibronectin binding domain of the Sfb protein adhesin of Streptococcus pyogenes occurs in many group A streptococci and does not cross-react with heart myosin. Micro. Pathog. 17, 111–120 (1994).

    CAS  Google Scholar 

  12. Steer, A. C., Law, I., Matatolu, L., Beall, B. W. & Carapetis, J. R. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect. Dis. 9, 611–616 (2009).

    PubMed  Google Scholar 

  13. Beall, B., Facklam, R. & Thompson, T. Sequencing emm-specific PCR products for routine and accurate typing of group A streptococci. J. Clin. Microbiol. 34, 953–958 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Sanderson-Smith, M. et al. A systematic and functional classification of Streptococcus pyogenes that serves as a new tool for molecular typing and vaccine development. J. Infect. Dis. 210, 1325–1338 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Enright, M. C., Spratt, B. G., Kalia, A., Cross, J. H. & Bessen, D. E. Multilocus sequence typing of Streptococcus pyogenes and the relationships between emm type and clone. Infect. Immun. 69, 2416–2427 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Mostowy, R. et al. Efficient inference of recent and ancestral recombination within bacterial populations. Mol. Biol. Evol. 34, 1167–1182 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lees, J. A. et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 29, 304–316 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Chochua, S. et al. Population and whole genome sequence based characterization of invasive group A streptococci recovered in the United States during 2015. MBio 8, e01422-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  19. Croucher, N. J. et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 43, e15 (2015).

    PubMed  Google Scholar 

  20. Marttinen, P. et al. Detection of recombination events in bacterial genomes from large population samples. Nucleic Acids Res. 40, e6 (2012).

    CAS  PubMed  Google Scholar 

  21. Page, A. J. et al. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31, 3691–3693 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Beres, S. B. et al. Genome-wide molecular dissection of serotype M3 group A Streptococcus strains causing two epidemics of invasive infections. Proc. Natl Acad. Sci. USA 101, 11833–11838 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Nasser, W. et al. Evolutionary pathway to increased virulence and epidemic group A Streptococcus disease derived from 3,615 genome sequences. Proc. Natl Acad. Sci. USA 111, E1768–E1776 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Turner, C. E. et al. Emergence of a new highly successful acapsular group A Streptococcus clade of genotype emm89 in the United Kingdom. MBio 6, e00622 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. You, Y. et al. Scarlet fever epidemic in China caused by Streptococcus pyogenes serotype M12: epidemiologic and molecular analysis. EBioMedicine 28, 128–135 (2018).

    PubMed  PubMed Central  Google Scholar 

  26. Lees, J. A. et al. Sequence element enrichment analysis to determine the genetic basis of bacterial phenotypes. Nat. Commun. 7, 12797 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N. & Corander, J. pyseer: a comprehensive tool for microbial pangenome-wide association studies. Bioinformatics 34, 4310–4312 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. McIver, K. S., Subbarao, S., Kellner, E. M., Heath, A. S. & Scott, J. R. Identification of isp, a locus encoding an immunogenic secreted protein conserved among group A streptococci. Infect. Immun. 64, 2548–2555 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Henningham, A. et al. Virulence role of the GlcNAc side chain of the Lancefield cell wall carbohydrate antigen in non-M1-serotype group A Streptococcus. MBio 9, e02294-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  30. Dale, J. B., Penfound, T. A., Chiang, E. Y. & Walton, W. J. New 30-valent M protein-based vaccine evokes cross-opsonic antibodies against non-vaccine serotypes of group A streptococci. Vaccine 29, 8175–8178 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Batzloff, M. R. et al. Protection against group A Streptococcus by immunization with J8-diphtheria toxoid: contribution of J8- and diphtheria toxoid-specific antibodies to protection. J. Infect. Dis. 187, 1598–1608 (2003).

    CAS  PubMed  Google Scholar 

  32. Guilherme, L. et al. Towards a vaccine against rheumatic fever. Clin. Dev. Immunol. 13, 125–132 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Pandey, M. et al. Combinatorial synthetic peptide vaccine strategy protects against hypervirulent CovR/S mutant streptococci. J. Immunol. 196, 3364–3374 (2016).

    CAS  PubMed  Google Scholar 

  34. Feil, S. C., Ascher, D. B., Kuiper, M. J., Tweten, R. K. & Parker, M. W. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J. Mol. Biol. 426, 785–792 (2014).

    CAS  PubMed  Google Scholar 

  35. Kagawa, T. F. et al. Model for substrate interactions in C5a peptidase from Streptococcus pyogenes: a 1.9 A crystal structure of the active form of ScpA. J. Mol. Biol. 386, 754–772 (2009).

    CAS  PubMed  Google Scholar 

  36. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yates, C. M., Filippis, I., Kelley, L. A. & Sternberg, M. J. SuSPect: enhanced prediction of single amino acid variant (SAV) phenotype using network features. J. Mol. Biol. 426, 2692–2701 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Croucher, N. J. et al. Population genomics of post-vaccine changes in pneumococcal epidemiology. Nat. Genet. 45, 656–663 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bart, M. J. et al. Global population structure and evolution of Bordetella pertussis and their relationship with vaccination. MBio 5, e01074 (2014).

    PubMed  PubMed Central  Google Scholar 

  40. Courtney, H. S. et al. Trivalent M-related protein as a component of next generation group A streptococcal vaccines. Clin. Exp. Vaccin. Res. 6, 45–49 (2017).

    CAS  Google Scholar 

  41. Corander, J. et al. Frequency-dependent selection in vaccine-associated pneumococcal population dynamics. Nat. Ecol. Evol. 1, 1950–1960 (2017).

    PubMed  PubMed Central  Google Scholar 

  42. McNally, A. et al. Signatures of negative frequency dependent selection in colonisation factors and the evolution of a multi-drug resistant lineage of Escherichia coli. Preprint at bioRxiv https://doi.org/10.1101/400374 (2018).

  43. Bao, Y. J., Shapiro, B. J., Lee, S. W., Ploplis, V. A. & Castellino, F. J. Phenotypic differentiation of Streptococcus pyogenes populations is induced by recombination-driven gene-specific sweeps. Sci. Rep. 6, 36644 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Vos, M. & Didelot, X. A comparison of homologous recombination rates in bacteria and archaea. ISME J. 3, 199–208 (2009).

    CAS  PubMed  Google Scholar 

  45. Chewapreecha, C. et al. Dense genomic sampling identifies highways of pneumococcal recombination. Nat. Genet. 46, 305–309 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. David, S. et al. Dynamics and impact of homologous recombination on the evolution of Legionella pneumophila. PLoS Genet. 13, e1006855 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Bergmann, R., Nerlich, A., Chhatwal, G. S. & Nitsche-Schmitz, D. P. Distribution of small native plasmids in Streptococcus pyogenes in India. Int. J. Med. Microbiol. 304, 370–378 (2014).

    CAS  PubMed  Google Scholar 

  48. Woodbury, R. L. et al. Plasmid-borne erm(T) from invasive, macrolide-resistant Streptococcus pyogenes strains. Antimicrob. Agents Chemother. 52, 1140–1143 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Wescombe, P. A., Heng, N. C., Burton, J. P., Chilcott, C. N. & Tagg, J. R. Streptococcal bacteriocins and the case for Streptococcus salivarius as model oral probiotics. Future Microbiol. 4, 819–835 (2009).

    CAS  PubMed  Google Scholar 

  50. Bensi, G. et al. Multi high-throughput approach for highly selective identification of vaccine candidates: the group A Streptococcus case. Mol. Cell Proteom. 11, 015693 (2012).

    Google Scholar 

  51. Ji, Y., Carlson, B., Kondagunta, A. & Cleary, P. P. Intranasal immunization with C5a peptidase prevents nasopharyngeal colonization of mice by the group A Streptococcus. Infect. Immun. 65, 2080–2087 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rivera-Hernandez, T. et al. An experimental group A vaccine that reduces pharyngitis and tonsillitis in a nonhuman primate model. MBio 10, e00693-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Chaguza, C. et al. Recombination in Streptococcus pneumoniae lineages increase with carriage duration and size of the polysaccharide capsule. MBio 7, e01053-16 (2016).

    PubMed  PubMed Central  Google Scholar 

  54. Hanage, W. P. et al. Using multilocus sequence data to define the pneumococcus. J. Bacteriol. 187, 6223–6230 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Driebe, E. M. et al. Using whole genome analysis to examine recombination across diverse sequence types of Staphylococcus aureus. PLoS ONE 10, e0130955 (2015).

    PubMed  PubMed Central  Google Scholar 

  56. Enright, M. C., Day, N. P., Davies, C. E., Peacock, S. J. & Spratt, B. G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 38, 1008–1015 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Coscolla, M. & Gonzalez-Candelas, F. Population structure and recombination in environmental isolates of Legionella pneumophila. Environ. Microbiol. 9, 643–656 (2007).

    CAS  PubMed  Google Scholar 

  58. Diancourt, L., Passet, V., Verhoef, J., Grimont, P. A. & Brisse, S. Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43, 4178–4182 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wyres, K. L. et al. Distinct evolutionary dynamics of horizontal gene transfer in drug resistant and virulent clones of Klebsiella pneumoniae. PLoS Genet. 15, e1008114 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Seale, A. C. et al. Invasive group A Streptococcus infection among children, rural Kenya. Emerg. Infect. Dis. 22, 224–232 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Athey, T. B. et al. Deriving group A Streptococcus typing information from short-read whole-genome sequencing data. J. Clin. Microbiol. 52, 1871–1876 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Chalker, V. et al. Genome analysis following a national increase in scarlet fever in England 2014. BMC Genom. 18, 224 (2017).

    Google Scholar 

  63. Kapatai, G., Coelho, J., Platt, S. & Chalker, V. J. Whole genome sequencing of group A Streptococcus: development and evaluation of an automated pipeline for emmgene typing. PeerJ 5, e3226 (2017).

    PubMed  PubMed Central  Google Scholar 

  64. Ibrahim, J. et al. Genome analysis of Streptococcus pyogenes associated with pharyngitis and skin infections. PLoS ONE 11, e0168177 (2016).

    PubMed  PubMed Central  Google Scholar 

  65. Page, A. J. et al. Robust high-throughput prokaryote de novo assembly and improvement pipeline for Illumina data. Micro. Genom. 2, e000083 (2016).

    Google Scholar 

  66. Souvorov, A., Agarwala, R. & Lipman, D. J. SKESA: strategic k-mer extension for scrupulous assemblies. Genome Biol. 19, 153 (2018).

    PubMed  PubMed Central  Google Scholar 

  67. Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).

    CAS  PubMed  Google Scholar 

  68. Sumby, P. et al. Evolutionary origin and emergence of a highly successful clone of serotype M1 group A Streptococcus involved multiple horizontal gene transfer events. J. Infect. Dis. 192, 771–782 (2005).

    CAS  PubMed  Google Scholar 

  69. He, M. et al. Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat. Genet. 45, 109–113 (2013).

    CAS  PubMed  Google Scholar 

  70. Arndt, D. et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).

    CAS  PubMed  Google Scholar 

  72. Letunic, I. & Bork, P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Argimon, S. et al. Microreact: visualizing and sharing data for genomic epidemiology and phylogeography. Micro. Genom. 2, e000093 (2016).

    Google Scholar 

  74. Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS  PubMed  Google Scholar 

  76. Yang, Z. PAML 4: phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).

    CAS  PubMed  Google Scholar 

  77. Weyrich, L. S. et al. Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus. Nature 544, 357–361 (2017).

    CAS  PubMed  Google Scholar 

  78. Davies, M. R. et al. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat. Genet. 47, 84–87 (2015).

    CAS  PubMed  Google Scholar 

  79. Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Health and Medical Research Council project and program grants for: Protein Glycan Interactions in Infectious Diseases and Cellular Microbiology; the Coalition to Accelerate New Vaccines Against Streptococcus (CANVAS; an Australian and New Zealand joint initiative); and The Wellcome Trust, UK. For part of this study, M.R.D. was supported by a National Health and Medical Research Council postdoctoral training fellowship (635250) and A.M. was a GENDRIVAX fellow funded by the European Union’s Seventh Framework Programme FP7/2007–2013/ under REA grant agreement number 251522. We acknowledge assistance from the sequencing and pathogen informatics core teams at The Wellcome Trust Sanger Institute. We acknowledge and thank the database curators of the S. pyogenes MLST and emm databases (especially D. Bessen). We dedicate this work to the memory of our friend and colleague Gusharan Singh Chhatwal.

Author information

Authors and Affiliations

Authors

Contributions

M.R.D., G.D. and M.J.W. conceived the project. M.R.D., A.M., J.A.Lacey, J.A.Lees, S.Duchene, P.R.S., M.T.G.H., S.Y.C.T., P.M.G., A.C.S., J.A.B., G.S.C., S.D.B., R.A.S., T.L., J.D.F., N.J.M., J.R.C., A.C.S., J.P., A.S., D.A.W., B.J.C. and M.J.W. designed the experiments. M.R.D., L.M., J.A.Lacey, J.A.Lees, S.David, A.M., R.J.T., K.A.W., S.R.H., T.R.-H., H.R.F., R.S.L.A.T., O.B., A.J.C., R.B., P.N.-S., N.J.M. and D.A.W. performed the experimental protocols. M.R.D., L.M., J.A.Lacey, J.A.Lees, S.Duchene, D.J.P., A.M., P.R.S., N.J.M., G.D. and M.J.W. analyzed the experimental results. M.R.D. and M.J.W. wrote the manuscript and all authors reviewed the manuscript.

Corresponding authors

Correspondence to Mark R. Davies or Mark J. Walker.

Ethics declarations

Competing interests

A.S. is an employee of the GSK group of companies with a commercial interest in GAS vaccine development. These companies had no influence over study design.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Supplementary Tables 1, 5, 7 and 10–12

Reporting Summary

Supplementary Table 2

GAS strains used in this study

Supplementary Table 3

List of 890 core GAS genes identified as having recombinogenic signatures as defined by fastGEAR

Supplementary Table 4

List of 416 ‘non-recombinogenic’ core GAS genes and markers of selection pressure (ratio of non-synonymous (dN) to synonymous (dS) codon subsititutions (dN/dS))

Supplementary Table 6

Frequency, size (length) and relative rates of recombination within 36 PopPUNK phylogroups

Supplementary Table 8

Position of amino acid variants within the streptolysin O (SLO) protein and the consensus sequence of the SLO mature protein (as plotted in Fig. 3a,c)

Supplementary Table 9

Position of amino acid variants within the C5a peptidase (ScpA) protein and the consensus sequence

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davies, M.R., McIntyre, L., Mutreja, A. et al. Atlas of group A streptococcal vaccine candidates compiled using large-scale comparative genomics. Nat Genet 51, 1035–1043 (2019). https://doi.org/10.1038/s41588-019-0417-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-019-0417-8

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology