Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparison of the multivariate genetic architecture of eight major psychiatric disorders across sex

Abstract

Differences in the patterning of genetic sharing between groups of individuals may arise from biological pathways, social mechanisms, phenotyping and ascertainment. We expand genomic structural equation modeling to allow for testing genomic structural invariance (GSI), that is, the formal comparison of multivariate genetic architecture across groups. We apply GSI to compare the autosomal multivariate genetic architecture of eight psychiatric disorders spanning three factors (psychotic, neurodevelopmental and internalizing) between cisgender males and females. We find that the genetic factor structure is largely similar across sex, permitting meaningful comparisons of associations at the level of the factors. However, in females, problematic alcohol use and posttraumatic stress disorder loaded more strongly on the internalizing factor, while the neurodevelopmental disorder factor exhibited weaker genetic correlations with the other factors. Four phenotypes (educational attainment, insomnia, smoking and deprivation) showed significant, albeit small, sex-differentiated associations with the psychotic factor. As genome-wide association study samples grow and diversify, GSI will become increasingly valuable for comparing multivariate genetic architecture across groups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Patterns of sex-stratified genetic associations.
Fig. 2: Genetic correlations between disorder factors and relevant biobehavioral phenotypes among males and females.

Similar content being viewed by others

Data availability

Disorder-level summary statistics from previously published GWAS can be found at the citations in Table 1. Factor-level, sex-stratified summary statistics and sex-stratified GWAS summary statistics for PTSD and alcohol problems produced for this study are available at https://osf.io/spg7f/ (ref. 59); see the Supplementary Note for complete information on these phenotypes. The sex-stratified eight-disorder LDSC object that can be used to reproduce the results is available at https://osf.io/pd4fx (ref. 59).

Code availability

A tutorial for conducting GSI analyses and estimating localSRMD is available at https://rpubs.com/tedooooooooooo/localsrmd (ref. 59). The R code for all genomic SEM analyses can be found at https://osf.io/wya8p (ref. 59).

References

  1. Grotzinger, A. D. et al. Genetic architecture of 11 major psychiatric disorders at biobehavioral, functional genomic, and molecular genetic levels of analysis. Nat. Genet. 54, 548–559 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee, P. H. et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell 179, 1469–1482 (2019).

    Article  Google Scholar 

  3. Lee, P. H., Feng, Y.-C. A. & Smoller, J. W. Pleiotropy and cross-disorder genetics among psychiatric disorders. Biol. Psychiatry 89, 20–31 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Khramtsova, E. A. et al. Quality control and analytic best practices for testing genetic models of sex differences in large populations. Cell 186, 2044–2061 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mostafavi, H. et al. Variable prediction accuracy of polygenic scores within an ancestry group. eLife 9, e48376 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abel, K. M., Drake, R. & Goldstein, J. M. Sex differences in schizophrenia. Int. Rev. Psychiatry 22, 417–428 (2010).

    Article  PubMed  Google Scholar 

  8. Dohrenwend, B. P. & Dohrenwend, B. S. Sex differences and psychiatric disorders. AJS 81, 1447–1454 (1976).

    CAS  PubMed  Google Scholar 

  9. Merikangas, A. K. & Almasy, L. Using the tools of genetic epidemiology to understand sex differences in neuropsychiatric disorders. Genes Brain Behav. 19, e12660 (2020).

    Article  PubMed  Google Scholar 

  10. Bernabeu, E. et al. Sex differences in genetic architecture in the UK Biobank. Nat. Genet. 53, 1283–1289 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. Blokland, G. A. M. et al. Sex-dependent shared and non-shared genetic architecture, across mood and psychotic disorders. Biol. Psychiatry 91, 102–117 (2022).

    Article  CAS  PubMed  Google Scholar 

  12. Duncan, L. E. et al. Largest GWAS of PTSD (N = 20 070) yields genetic overlap with schizophrenia and sex differences in heritability. Mol. Psychiatry 23, 666–673 (2018).

    Article  CAS  PubMed  Google Scholar 

  13. Martin, J. et al. Examining sex-differentiated genetic effects across neuropsychiatric and behavioral traits. Biol. Psychiatry 89, 1127–1137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silveira, P. P., Pokhvisneva, I., Howard, D. M. & Meaney, M. J. A sex-specific genome-wide association study of depression phenotypes in UK Biobank. Mol. Psychiatry 28, 2469–2479 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhu, C. et al. Amplification is the primary mode of gene-by-sex interaction in complex human traits. Cell Genom. 3, 100297 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Khramtsova, E. A., Davis, L. K. & Stranger, B. E. The role of sex in the genomics of human complex traits. Nat. Rev. Genet. 20, 173–190 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lorenzo-Seva, U. & Ten Berge, J. M. Tucker’s congruence coefficient as a meaningful index of factor similarity. Methodology 2, 57–64 (2006).

    Article  Google Scholar 

  20. Funder, D. C. & Ozer, D. J. Evaluating effect size in psychological research: sense and nonsense. Adv. Methods Pract. Psychol. Sci. 2, 156–168 (2019).

    Article  Google Scholar 

  21. Van Der Sluis, S., Dolan, C. V. & Stoel, R. D. A note on testing perfect correlations in SEM. Struct. Equ. Model. 12, 551–577 (2005).

    Article  Google Scholar 

  22. Gogos, A., Ney, L. J., Seymour, N., Van Rheenen, T. E. & Felmingham, K. L. Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: are gonadal hormones the link? Br. J. Pharmacol. 176, 4119–4135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sinnott-Armstrong, N., Naqvi, S., Rivas, M. & Pritchard, J. K. GWAS of three molecular traits highlights core genes and pathways alongside a highly polygenic background. eLife 10, e58615 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Harden, K. P. Genetic influences on adolescent sexual behavior: why genes matter for environmentally oriented researchers. Psychol. Bull. 140, 434–465 (2014).

    Article  PubMed  Google Scholar 

  25. Moore, S. R., Harden, K. P. & Mendle, J. Pubertal timing and adolescent sexual behavior in girls. Dev. Psychol. 50, 1734–1745 (2014).

    Article  PubMed  Google Scholar 

  26. Lake, A. M., Goleva, S. B., Samuels, L. R., Carpenter, L. M. & Davis, L. K. Sex differences in health conditions associated with sexual assault in a large hospital population. Complex Psychiatry 8, 80–89 (2023).

    Article  PubMed  Google Scholar 

  27. Tolin, D. F. & Foa, E. B. Sex differences in trauma and posttraumatic stress disorder: a quantitative review of 25 years of research. Psychol. Bull. 132, 959–992 (2006).

    Article  PubMed  Google Scholar 

  28. Bourgeois, C., Lecomte, T. & Daigneault, I. Psychotic disorders in sexually abused youth: a prospective matched-cohort study. Schizophr. Res. 199, 123–127 (2018).

    Article  PubMed  Google Scholar 

  29. Miller, M. W. & Resick, P. A. Internalizing and externalizing subtypes in female sexual assault survivors: implications for the understanding of complex PTSD. Behav. Ther. 38, 58–71 (2007).

    Article  PubMed  Google Scholar 

  30. Lai, M. C. & Baron-Cohen, S. Identifying the lost generation of adults with autism spectrum conditions. Lancet Psychiatry 2, 1013–1027 (2015).

    Article  PubMed  Google Scholar 

  31. Rødgaard, E. M., Jensen, K., Miskowiak, K. W. & Mottron, L. Childhood diagnoses in individuals identified as autistics in adulthood. Mol. Autism 12, 73 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Bilghese, M. et al. A general approach to adjusting genetic studies for assortative mating. Preprint at bioRxiv https://doi.org/10.1101/2023.09.01.555983 (2023).

  33. Border, R. et al. Cross-trait assortative mating is widespread and inflates genetic correlation estimates. Science 378, 754–761 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Grotzinger, A. D. & Keller, M. C. Potential bias in genetic correlations. Science 378, 709–710 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hatoum, A. S. et al. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nat. Ment. Health 1, 210–223 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Brown, B. C., Ye, C. J., Price, A. L. & Zaitlen, N. Transethnic genetic-correlation estimates from summary statistics. Am. J. Hum. Genet. 99, 76–88 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shi, H. et al. Population-specific causal disease effect sizes in functionally important regions impacted by selection. Nat. Commun. 12, 1098 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Turley, P. et al. Multi-ancestry meta-analysis yields novel genetic discoveries and ancestry-specific associations. Preprint at bioRxiv https://doi.org/10.1101/2021.04.23.441003 (2021).

  39. Walters, R. K. et al. Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders. Nat. Neurosci. 21, 1656–1669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Mallard, T. T. et al. Item-level genome-wide association study of the alcohol use disorders identification test in three population-based cohorts. Am. J. Psychiatry 179, 58–70 (2022).

    Article  PubMed  Google Scholar 

  41. Martin, J. et al. Sex‐specific manifestation of genetic risk for attention deficit hyperactivity disorder in the general population. J. Child Psychol. Psychiatry 59, 908–916 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Grove, J. et al. Identification of common genetic risk variants for autism spectrum disorder. Nat. Genet. 51, 431–444 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Maihofer, A. X. et al. Enhancing discovery of genetic variants for posttraumatic stress disorder through integration of quantitative phenotypes and trauma exposure information. Biol. Psychiatry 91, 626–636 (2022).

    Article  PubMed  Google Scholar 

  44. Coleman, J. R. I. et al. The genetics of the mood disorder spectrum: genome-wide association analyses of more than 185,000 cases and 439,000 controls. Biol. Psychiatry 88, 169–184 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. De Vlaming, R., Johannesson, M., Magnusson, P. K., Ikram, M. A. & Visscher, P. M. Equivalence of LD-score regression and individual-level-data methods. Preprint at bioRxiv https://doi.org/10.1101/211821 (2017).

  46. Grotzinger, A. D., de la Fuente, J., Privé, F., Nivard, M. G. & Tucker-Drob, E. M. Pervasive downward bias in estimates of liability scale heritability in GWAS meta-analysis: a simple solution. Biol. Psychiatry 93, 29–36 (2023).

    Article  CAS  PubMed  Google Scholar 

  47. Evans, L. M. et al. Comparison of methods that use whole genome data to estimate the heritability and genetic architecture of complex traits. Nat. Genet. 50, 737–745 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Horn, J. L. & McArdle, J. J. A practical and theoretical guide to measurement invariance in aging research. Exp. Aging Res. 18, 117–144 (1992).

    Article  CAS  PubMed  Google Scholar 

  49. Putnick, D. L. & Bornstein, M. H. Measurement invariance conventions and reporting: the state of the art and future directions for psychological research. Dev. Rev. 41, 71–90 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Vandenberg, R. J. & Lance, C. E. A review and synthesis of the measurement invariance literature: suggestions, practices, and recommendations for organizational research. Organ. Res. Methods 3, 4–70 (2000).

    Article  Google Scholar 

  51. Kenny, D. A. Measuring model fit. http://davidakenny.net/cm/fit.htm (2014).

  52. Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Model. 6, 1–55 (1999).

    Article  Google Scholar 

  53. Drasgow, F. Scrutinizing psychological tests: measurement equivalence and equivalent relations with external variables are the central issues. Psychol. Bull. 95, 134–135 (1984).

    Article  Google Scholar 

  54. Meredith, W. Measurement invariance, factor analysis and factorial invariance. Psychometrika 58, 525–543 (1993).

    Article  Google Scholar 

  55. Byrne, B. M., Shavelson, R. J. & Muthén, B. Testing for the equivalence of factor covariance and mean structures: the issue of partial measurement invariance. Psychol. Bull. 105, 456–466 (1989).

    Article  Google Scholar 

  56. Chen, F. F. Sensitivity of goodness of fit indexes to lack of measurement invariance. Struct. Equ. Model. 14, 464–504 (2007).

    Article  Google Scholar 

  57. Shi, D., Maydeu-Olivares, A. & DiStefano, C. The relationship between the standardized root mean square residual and model misspecification in factor analysis models. Multivariate Behav. Res. 53, 676–694 (2018).

    Article  PubMed  Google Scholar 

  58. Cheung, G. W. & Rensvold, R. B. Evaluating goodness-of-fit indexes for testing measurement invariance. Struct. Equ. Model. 9, 233–255 (2002).

    Article  Google Scholar 

  59. Schwaba, T., Grotzinger, A. D., Nivard, M. G., Davis, L. & Tucker-Drob, E. M. Testing sex differences in the multivariate genetic architecture of psychiatric disorders. OSF https://doi.org/10.17605/OSF.IO/SPG7F (2022).

  60. Lakens, D., Scheel, A. M. & Isager, P. M. Equivalence testing for psychological research: a tutorial. Adv. Meth. Pract. Psychol. 1, 259–269 (2018).

    Google Scholar 

  61. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a National Institutes of Health (NIH) grant no. R01MH120219. E.M.T.-D. is a faculty associate of the Population Research Center and the Center on Aging and Population Sciences at the University of Texas at Austin, which are supported by NIH grant nos. P2CHD042849 and P30AG066614, respectively.

Author information

Authors and Affiliations

Authors

Contributions

T.S. and E.M.T.-D. designed the study and wrote the manuscript. T.S. conducted the multivariate analyses. T.T.M. and A.X.M. contributed new genome-wide analyses. T.S., E.M.T.-D., M.R. and M.G.N. conceptualized the statistical tests. L.K.D. consulted on the role of sex as a biological variable. T.T.M., A.X.M., M.R., P.H.L., J.W.S., L.K.D., M.G.N. and A.D.G. provided manuscript feedback and editing.

Corresponding author

Correspondence to Ted Schwaba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Jonathan Coleman, Frank Wendt and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary localSRMD guide, Figs. 1–15 and Discussion.

Reporting Summary

Peer Review File

Supplementary Table 1

Supplementary Tables 1–18.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwaba, T., Mallard, T.T., Maihofer, A.X. et al. Comparison of the multivariate genetic architecture of eight major psychiatric disorders across sex. Nat Genet 57, 583–590 (2025). https://doi.org/10.1038/s41588-025-02093-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-025-02093-6

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research