Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-read RNA sequencing atlas of human microglia isoforms elucidates disease-associated genetic regulation of splicing

Abstract

Microglia, the innate immune cells of the central nervous system, have been genetically implicated in multiple neurodegenerative diseases. Mapping the genetics of gene expression in human microglia has identified several loci associated with disease-associated genetic variants in microglia-specific regulatory elements. However, identifying genetic effects on splicing is challenging because of the use of short sequencing reads. Here, we present the isoform-centric microglia genomic atlas (isoMiGA), which leverages long-read RNA sequencing to identify 35,879 novel microglia isoforms. We show that these isoforms are involved in stimulation response and brain region specificity. We then quantified the expression of both known and novel isoforms in a multi-ancestry meta-analysis of 555 human microglia short-read RNA sequencing samples from 391 donors, and found associations with genetic risk loci in Alzheimer’s and Parkinson’s disease. We nominate several loci that may act through complex changes in isoform and splice-site usage.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The isoMiGA project.
Fig. 2: Identifying novel isoforms in human microglia.
Fig. 3: Differential gene expression and isoform usage in interferon stimulation and between brain regions finds novel genes and isoforms.
Fig. 4: QTL mapping with augmented isoform reference.
Fig. 5: Novel isoforms improve interpretation of AD colocalization.
Fig. 6: sQTLs in PD identifies 5′-UTR exon in SIPA1L2.

Similar content being viewed by others

Data availability

Datasets used in this study are publicly available as follows: long-read data at https://www.synapse.org/Synapse:syn64371963, Gaffney short-read cohort at https://ega-archive.org/datasets/EGAD00001005736, Raj short-read microglia samples at https://dss.niagads.org/datasets/ng00105/, Roussos short-read batch 1 at https://doi.org/10.7303/syn26207321, Roussos short-read batch 2 at https://www.synapse.org/Synapse:syn25671146, iPS-derived microglia short-read at Gene Expression Omnibus GSE240907, novel isoform GTF and FASTA via Zenodo at https://zenodo.org/record/8290956 (ref. 93), count matrices for all cohorts via Zenodo at https://doi.org/10.5281/zenodo.8291210 (ref. 94), all QTL summary statistics via Zenodo at https://zenodo.org/record/8250771 (ref. 95), Database of Conjoined Genes at http://metasystems.riken.jp/conjoing/, AD GWAS summary statistics48 at https://www.ebi.ac.uk/gwas/studies/GCST90027158, AD GWAS summary statistics2 at https://www.niagads.org/datasets/ng00036, PD GWAS summary statistics49 at https://research.23andme.com/collaborate/, schizophrenia GWAS summary statistics (Trubetskoy) at https://pgc.unc.edu/for-researchers/download-results/, microglia caQTLs15 at https://doi.org/10.7303/syn26207321 and bulk brain eQTLs and sQTLs (CommonMind) at https://www.synapse.org/#!Synapse:syn2759792. Source data are provided with this paper.

Code availability

The genotype quality control pipeline is available via Zenodo at https://doi.org/10.5281/zenodo.13864727 (ref. 96). The long-read RNA-seq pipeline is available via Zenodo at https://doi.org/10.5281/zenodo.13864731 (ref. 97). The QTL preparation and meta-analysis pipeline is available via Zenodo at https://doi.org/10.5281/zenodo.13864735 (ref. 98). The colocalization and MESC pipelines are available via Zenodo at https://doi.org/10.5281/zenodo.13864729 (ref. 99). All code used to produce analysis for figures is available via Zenodo at https://doi.org/10.5281/zenodo.13864720 (ref. 100).

References

  1. Guerreiro, R. et al. TREM2 variants in Alzheimer’s disease. N. Engl. J. Med. 368, 117–127 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Lambert, J. C. et al. Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat. Genet. 45, 1452–1458 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Raj, T. et al. CD33: increased inclusion of exon 2 implicates the Ig V-set domain in Alzheimer’s disease susceptibility. Hum. Mol. Genet. 23, 2729–2736 (2014).

    Article  CAS  PubMed  Google Scholar 

  4. Raj, T. et al. Polarization of the effects of autoimmune and neurodegenerative risk alleles in leukocytes. Science 344, 519–523 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Efthymiou, A. G. & Goate, A. M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener. 12, 43 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Huang, K.-L. et al. A common haplotype lowers PU.1 expression in myeloid cells and delays onset of Alzheimer’s disease. Nat. Neurosci. 20, 1052–1061 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 53, 392–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Andersen, M. S. et al. Heritability enrichment implicates microglia in Parkinson’s disease pathogenesis. Ann. Neurol. 89, 942–951 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Novikova, G. et al. Integration of Alzheimer’s disease genetics and myeloid genomics identifies disease risk regulatory elements and genes. Nat. Commun. 12, 1610 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Navarro, E. et al. Dysregulation of mitochondrial and proteolysosomal genes in Parkinson’s disease myeloid cells. Nat. Aging 1, 850–863 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nott, A. et al. Brain cell type-specific enhancer–promoter interactome maps and disease-risk association. Science 366, 1134–1139 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corces, M. R. et al. Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases. Nat. Genet. 52, 1158–1168 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Young, A. M. H. et al. A map of transcriptional heterogeneity and regulatory variation in human microglia. Nat. Genet. 53, 861–868 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lopes, K. P. et al. Genetic analysis of the human microglial transcriptome across brain regions, aging and disease pathologies. Nat. Genet. 54, 4–17 (2022).

    Article  CAS  PubMed  Google Scholar 

  15. Kosoy, R. et al. Genetics of the human microglia regulome refines Alzheimer’s disease risk loci. Nat. Genet. 54, 1145–1154 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Langston, R. G. et al. Association of a common genetic variant with Parkinson’s disease is mediated by microglia. Sci. Transl. Med. 14, eabp8869 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bryois, J. et al. Cell-type-specific cis-eQTLs in eight human brain cell types identify novel risk genes for psychiatric and neurological disorders. Nat. Neurosci. 25, 1104–1112 (2022).

    Article  CAS  PubMed  Google Scholar 

  18. Schilder, B. M. & Raj, T. Fine-mapping of Parkinson’s disease susceptibility loci identifies putative causal variants. Hum. Mol. Genet. 31, 888–900 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Fujita, M. et al. Cell subtype-specific effects of genetic variation in the Alzheimer’s disease brain. Nat. Genet. 56, 605–614 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Li, Y. I. et al. RNA splicing is a primary link between genetic variation and disease. Science 352, 600–604 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).

    Article  Google Scholar 

  22. Mittleman, B. E. et al. Alternative polyadenylation mediates genetic regulation of gene expression. eLife 9, e57492 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alasoo, K. et al. Genetic effects on promoter usage are highly context-specific and contribute to complex traits. eLife 8, e41673 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Li, Y. I. et al. Annotation-free quantification of RNA splicing using LeafCutter. Nat. Genet. 50, 151–158 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Raj, T. et al. Integrative transcriptome analyses of the aging brain implicate altered splicing in Alzheimer’s disease susceptibility. Nat. Genet. 50, 1584–1592 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Monlong, J., Calvo, M., Ferreira, P. G. & Guigó, R. Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat. Commun. 5, 4698 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Qi, T. et al. Genetic control of RNA splicing and its distinct role in complex trait variation. Nat. Genet. 54, 1355–1363 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, Y. et al. Regional variation of splicing QTLs in human brain. Am. J. Hum. Genet. 107, 196–210 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, D. et al. Incomplete annotation has a disproportionate impact on our understanding of Mendelian and complex neurogenetic disorders. Sci. Adv. 6, eaay8299 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Sharon, D., Tilgner, H., Grubert, F. & Snyder, M. A single-molecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009–1014 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Castaldi, P. J., Abood, A., Farber, C. R. & Sheynkman, G. M. Bridging the splicing gap in human genetics with long-read RNA sequencing: finding the protein isoform drivers of disease. Hum. Mol. Genet. 31, R123–R136 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Leung, S. K. et al. Full-length transcript sequencing of human and mouse cerebral cortex identifies widespread isoform diversity and alternative splicing. Cell Rep. 37, 110022 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glinos, D. A. et al. Transcriptome variation in human tissues revealed by long-read sequencing. Nature 608, 353–359 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Abood, A. et al. Long-read proteogenomics to connect disease-associated sQTLs to the protein isoform effectors of disease. Am. J. Hum. Genet. 111, 1914–1931 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Shumate, A., Wong, B., Pertea, G. & Pertea, M. Improved transcriptome assembly using a hybrid of long and short reads with StringTie. PLoS Comput. Biol. 18, e1009730 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Prakash, T. et al. Expression of conjoined genes: another mechanism for gene regulation in eukaryotes. PLoS ONE 5, e13284 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Bampton, A. et al. HnRNP K mislocalisation is a novel protein pathology of frontotemporal lobar degeneration and ageing and leads to cryptic splicing. Acta Neuropathol. 142, 609–627 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kiianitsa, K. et al. Novel TREM2 splicing isoform that lacks the V-set immunoglobulin domain is abundant in the human brain. J. Leukoc. Biol. 110, 829–837 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. Shaw, B. C. et al. An alternatively spliced TREM2 isoform lacking the ligand binding domain is expressed in human brain. J. Alzheimers Dis. 87, 1647–1657 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Grabert, K. et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat. Neurosci. 19, 504–516 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. van der Poel, M. et al. Transcriptional profiling of human microglia reveals grey–white matter heterogeneity and multiple sclerosis-associated changes. Nat. Commun. 10, 1139 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Navarro, E. et al. LRRK2 G2019S variant is associated with transcriptional changes in Parkinson’s disease human myeloid cells under proinflammatory environment. Preprint at bioRxiv https://doi.org/10.1101/2024.05.27.594821 (2024).

  43. Parikh, I., Fardo, D. W. & Estus, S. Genetics of PICALM expression and Alzheimer’s disease. PLoS ONE 9, e91242 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Zeng, B. et al. Multi-ancestry eQTL meta-analysis of human brain identifies candidate causal variants for brain-related traits. Nat. Genet. 54, 161–169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trincado, J. L. et al. SUPPA2: fast, accurate, and uncertainty-aware differential splicing analysis across multiple conditions. Genome Biol. 19, 40 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Yao, D. W., O’Connor, L. J., Price, A. L. & Gusev, A. Quantifying genetic effects on disease mediated by assayed gene expression levels. Nat. Genet. 52, 626–633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Li, Y. I., Wong, G., Humphrey, J. & Raj, T. Prioritizing Parkinson’s disease genes using population-scale transcriptomic data. Nat. Commun. 10, 994 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Bellenguez, C. et al. New insights into the genetic etiology of Alzheimer’s disease and related dementias. Nat. Genet. 54, 412–436 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Andreone, B. J. et al. Alzheimer’s-associated PLCγ2 is a signaling node required for both TREM2 function and the inflammatory response in human microglia. Nat. Neurosci. 23, 927–938 (2020).

    Article  CAS  PubMed  Google Scholar 

  51. Sims, R. et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat. Genet. 49, 1373–1384 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–548.e24 (2019).

    Article  CAS  PubMed  Google Scholar 

  53. Zeng, T. & Li, Y. I. Predicting RNA splicing from DNA sequence using Pangolin. Genome Biol. 23, 103 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kerimov, N. et al. eQTL Catalogue 2023: new datasets, X chromosome QTLs, and improved detection and visualisation of transcript-level QTLs. PLoS Genet. 19, e1010932 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Schwartzentruber, J. et al. Molecular and functional variation in iPSC-derived sensory neurons. Nat. Genet. 50, 54–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Joglekar, A. et al. A spatially resolved brain region- and cell type-specific isoform atlas of the postnatal mouse brain. Nat. Commun. 12, 463 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Volden, R. & Vollmers, C. Single-cell isoform analysis in human immune cells. Genome Biol. 23, 47 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Al’Khafaji, A. M. et al. High-throughput RNA isoform sequencing using programmed cDNA concatenation. Nat. Biotechnol. 42, 582–586 (2024).

    Article  PubMed  Google Scholar 

  59. Olah, M. et al. Single cell RNA sequencing of human microglia uncovers a subset associated with Alzheimer’s disease. Nat. Commun. 11, 6129 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Garrido-Martín, D., Borsari, B., Calvo, M., Reverter, F. & Guigó, R. Identification and analysis of splicing quantitative trait loci across multiple tissues in the human genome. Nat. Commun. 12, 727 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Fair, B. et al. Global impact of unproductive splicing on human gene expression. Nat. Genet. 56, 1851–1861 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mu, Z. et al. The impact of cell type and context-dependent regulatory variants on human immune traits. Genome Biol. 22, 122 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mattei, D. et al. Enzymatic dissociation induces transcriptional and proteotype bias in brain cell populations. Int. J. Mol. Sci. 21, 7944 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pardo-Palacios, F. J. et al. Systematic assessment of long-read RNA-seq methods for transcript identification and quantification. Nat. Methods 21, 1349–1363 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Inamo, J. et al. Long-read sequencing for 29 immune cell subsets reveals disease-linked isoforms. Nat. Commun. 15, 4285 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Wang, X. et al. Detection of proteome diversity resulted from alternative splicing is limited by trypsin cleavage specificity. Mol. Cell. Proteomics 17, 422–430 (2018).

    Article  CAS  PubMed  Google Scholar 

  67. Cooper, Y. A. et al. Functional regulatory variants implicate distinct transcriptional networks in dementia. Science 377, eabi8654 (2022).

    Article  CAS  PubMed  Google Scholar 

  68. Li, H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kovaka, S. et al. Transcriptome assembly from long-read RNA-seq alignments with StringTie2. Genome Biol. 20, 278 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Tardaguila, M. et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 28, 396–411 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Roy, K. R. & Chanfreau, G. F. Robust mapping of polyadenylated and non-polyadenylated RNA 3′ ends at nucleotide resolution by 3′-end sequencing. Methods 176, 4–13 (2020).

    Article  CAS  PubMed  Google Scholar 

  72. Chen, Y. et al. Context-aware transcript quantification from long-read RNA-seq data with Bambu. Nat. Methods 20, 1187–1195 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Prjibelski, A. D. et al. Accurate isoform discovery with IsoQuant using long reads. Nat. Biotechnol. 41, 915–918 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pertea, G. & Pertea, M. GFF Utilities: GffRead and GffCompare. F1000Res. 9, ISCB Comm J-304 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Biotechnol. 14, 417–419 (2017).

    CAS  Google Scholar 

  77. Soneson, C. Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. https://doi.org/10.12688/f1000research.7563.1 (2015).

  78. Hoffman, G. E. & Roussos, P. Dream: powerful differential expression analysis for repeated measures designs. Bioinformatics 37, 192–201 (2021).

    Article  CAS  PubMed  Google Scholar 

  79. Gilis, J., Vitting-Seerup, K., Van den Berge, K. & Clement, L. satuRn: scalable analysis of differential transcript usage for bulk and single-cell RNA-sequencing applications. F1000Res. 10, 374 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    Article  CAS  PubMed  Google Scholar 

  81. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Taylor-Weiner, A. et al. Scaling computational genomics to millions of individuals with GPUs. Genome Biol. 20, 228 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Stegle, O., Parts, L., Piipari, M., Winn, J. & Durbin, R. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7, 500 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Yang, J., Lee, S. H., Goddard, M. E. & Visscher, P. M. GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Storey, J. D. The positive false discovery rate: a Bayesian interpretation and the q-value. Ann. Stat. 31, 2013–2035 (2003).

    Article  Google Scholar 

  86. Law, C. W., Chen, Y., Shi, W. & Smyth, G. K. voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol. 15, R29 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Cotto, K. C. et al. Integrated analysis of genomic and transcriptomic data for discovery of splicing variants in cancer. Nat. Commun. 14, 1589 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Degner, J. F. et al. DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482, 390–394 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Myers, T. A., Chanock, S. J. & Machiela, M. J. LDlinkR: an R package for rapidly calculating linkage disequilibrium statistics in diverse populations. Front. Genet. 11, 157 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  91. Wallace, C. A more accurate method for colocalisation analysis allowing for multiple causal variants. PLoS Genet. 17, e1009440 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Humphrey, J. & Raj, T. isoMiGA: Long-read isoforms discovered in human microglia. Zenodo https://doi.org/10.5281/zenodo.8290955 (2023).

  94. Humphrey, J. & Raj, T. isoMiGA: Isoform and gene-level counts and TPM in short-read human microglia. Zenodo https://doi.org/10.5281/zenodo.8291210 (2023).

  95. Humphrey, J. & Raj, T. isoMIGA: Expression and Splicing QTL Summary Statistics in Human Microglia. Zenodo https://doi.org/10.5281/zenodo.8250770 (2023).

  96. Humphrey, J. & Muller, B. RajLabMSSM/Genotype_QC_Pipeline_2.0: publication. Zenodo https://doi.org/10.5281/zenodo.13864726 (2024).

  97. Humphrey, J. RajLabMSSM/isoseq-Pipeline: publication. Zenodo https://doi.org/10.5281/zenodo.13864730 (2024).

  98. Humphrey, J., Kailash, B. P., Brophy, E. & Naito, T. RajLabMSSM/mmQTL-Pipeline: publication Zenodo https://doi.org/10.5281/zenodo.13864734 (2024).

  99. Humphrey, J., Kailash, B. P. & Cuddleston, W. RajLabMSSM/downstream-QTL: publication. Zenodo https://doi.org/10.5281/zenodo.13864728 (2024).

  100. Humphrey, J. RajLabMSSM/isoMiGA: publication version. Zenodo https://doi.org/10.5281/zenodo.13864719 (2024).

Download references

Acknowledgements

We thank the patients and families who donated material for these studies. We thank E. Tseng of Pacific Biosciences who provided important critical feedback on long-read analysis. This study was supported by the following National Institutes of Health grant nos: NIA U01-AG058635, NIA R21-AG063130, NIA R01-AG054005, NIA U01-AG068880, NIA RF1-AG065926, NIA R56-AG055824, NIA P30-AG066514, NINDS U54-NS123743 and NINDS R01-NS116006 to T.R., J.H., E.B., D.M., E.C. and B.Z.M. NIA U01-AG058635, NIA R01-AG067025, NIA R01-AG082185, NIA R01-AG050986, NIA R01-AG065582, NIMH R01-MH125246 and NINDS U01-NS125580 to P.R., R.K., B.Z., S.P.K., S.A., Z.S., G.E.H. and J.F.F. NIA U01-AG058635 to A.M.G., A.M. and A.G.E. This work was supported in part through the computational resources and staff expertise provided by Scientific Computing at the Icahn School of Medicine at Mount Sinai and supported by the Clinical and Translational Science Awards (CTSA) grant no. UL1TR004419 from the National Center for Advancing Translational Sciences. Research reported in this paper was supported by the Office of Research Infrastructure of the National Institutes of Health under award numbers S10OD026880 and S10OD030463. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Contributions

The study was conceived by J.H., P.R. and T.R. Data analysis was led by J.H., with contributions from E.B., R.K., B.Z., G.E.H., A.R., T.N., B.Z.M. and C.-F.T. Data generation was performed by E.C., D.M., A.G.E., E.N., A.A., G.J.L.J.S., C.D.S., V.F.-A., A.M., S.P.K., S.A., P.M., K.P., R.B.K., Z.S., N.F., C.-F.T., M.A.G., M.E.M., V.L.P., K.K.W., T.S. and J.F.F. Work was supervised by G.E.H., T.L., L.D.d.W., R.S., A.M.G., J.F.F., D.A.B., V.H., P.R. and T.R. The paper was written by J.H., with input from all co-authors.

Corresponding authors

Correspondence to Panos Roussos or Towfique Raj.

Ethics declarations

Competing interests

The following authors wish to disclose their industry relations: A.M.G. is a scientific advisory board member for Genentech and Muna Therapeutics; R.S. is currently a paid consultant and equity holder at GeneDx; N.F. is currently an employee of Pacific Biosciences; B.Z.M. is currently an employee of Abbvie; A.G.E. is an employee of BlueRock Therapeutics. All other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Kaur Alasoo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Results, Methods and Figs. 1–14.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–13.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humphrey, J., Brophy, E., Kosoy, R. et al. Long-read RNA sequencing atlas of human microglia isoforms elucidates disease-associated genetic regulation of splicing. Nat Genet 57, 604–615 (2025). https://doi.org/10.1038/s41588-025-02099-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-025-02099-0

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research