Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genome-wide association meta-analysis of childhood ADHD symptoms and diagnosis identifies new loci and potential effector genes

A Publisher Correction to this article was published on 29 September 2025

This article has been updated

Abstract

We performed a genome-wide association meta-analysis (GWAMA) of 290,134 attention-deficit/hyperactivity disorder (ADHD) symptom measures of 70,953 unique individuals from multiple raters, ages and instruments (ADHDSYMP). Next, we meta-analyzed the results with a study of ADHD diagnosis (ADHDOVERALL). ADHDSYMP returned no genome-wide significant variants. We show that the combined ADHDOVERALL GWAMA identified 39 independent loci, of which 17 were new. Using a recently developed gene-mapping method, Fine-mapped Locus Assessment Model of Effector genes, we identified 22 potential ADHD effector genes implicating several new biological processes and pathways. Moderate negative genetic correlations (rg < −0.40) were observed with multiple cognitive traits. In three cohorts, polygenic scores (PGSs) based on ADHDOVERALL outperformed PGSs based on ADHD symptoms and diagnosis alone. Our findings support the notion that clinical ADHD is at the extreme end of a continuous liability that is indexed by ADHD symptoms. We show that including ADHD symptom counts helps to identify new genes implicated in ADHD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Manhattan plot of GWAMA of ADHD symptoms.
Fig. 2: Manhattan plot of GWAMA of ADHD symptoms and ADHD diagnosis.
Fig. 3: Genetic correlations with external phenotypes.

Similar content being viewed by others

Data availability

Summary statistics for ADHDSYMP and ADHDOVERALL are available for download through GWAS Catalog (ebi.ac.uk/gwas/studies/GCST90568440 and ebi.ac.uk/gwas/studies/GCST90568441). ADHDDIAG summary statistics are available for download at the Psychiatric Genomics Consortium (PGC) website (https://www.med.unc.edu/pgc/download-results/). Raw data are available upon request through the individual participating cohorts. Individual cohort GWAS summary statistics are available upon request through the corresponding author. Datasets used for gene mapping and hypergeometric gene-set tests in FUMA are listed in Supplementary Methods.

Code availability

The complete analysis plan is available for download at https://www.action-euproject.eu/sites/default/files/Action%20AGG%20AP%20SOP.pdf. The N-weighted GWAMA code is available via GitHub at https://github.com/baselmans/multivariate_GWAMA and via Zenodo at https://doi.org/10.5281/zenodo.15862079 (ref. 44. For a list of software and versions used, see Supplementary Methods.

Change history

References

  1. Faraone, S. V., Biederman, J. & Mick, E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. Psychol. Med. 36, 159–165 (2006).

    Article  PubMed  Google Scholar 

  2. Kan, K.-J. et al. Genetic and environmental stability in attention problems across the lifespan: evidence from the Netherlands twin register. J. Am. Acad. Child Adolesc. Psychiatry 52, 12–25 (2013).

    Article  PubMed  Google Scholar 

  3. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (American Psychiatric Association Publishing, 2013).

  4. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 1, 15020 (2015).

    Article  PubMed  Google Scholar 

  5. Caci, H. et al. Daily life impairments associated with self-reported childhood/adolescent attention-deficit/hyperactivity disorder and experiences of diagnosis and treatment: results from the European Lifetime Impairment Survey. Eur. Psychiatry 29, 316–323 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Caci, H. et al. Daily life impairments associated with childhood/adolescent attention-deficit/hyperactivity disorder as recalled by adults: results from the European Lifetime Impairment Survey. CNS Spectr. 20, 112–121 (2015).

    Article  PubMed  Google Scholar 

  7. Faraone, S. V. et al. Attention-deficit/hyperactivity disorder. Nat. Rev. Dis. Primers 10, 11 (2024).

    Article  PubMed  Google Scholar 

  8. Faraone, S. V. & Larsson, H. Genetics of attention deficit hyperactivity disorder. Mol. Psychiatry 24, 562–575 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Kan, K.-J., van Beijsterveldt, C. E. M., Bartels, M. & Boomsma, D. I. Assessing genetic influences on behavior: informant and context dependency as illustrated by the analysis of attention problems. Behav. Genet. 44, 326–336 (2014).

    Article  PubMed  Google Scholar 

  10. Merwood, A. et al. Different heritabilities but shared etiological influences for parent, teacher and self-ratings of ADHD symptoms: an adolescent twin study. Psychol. Med. 43, 1973–1984 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. Demontis, D. et al. Discovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorder. Nat. Genet. 51, 63–75 (2019).

    Article  CAS  PubMed  Google Scholar 

  12. Middeldorp, C. M. et al. A genome-wide association meta-analysis of attention-deficit/hyperactivity disorder symptoms in population-based pediatric cohorts. J. Am. Acad. Child Adolesc. Psychiatry 55, 896–905 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Demontis, D. et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nat. Genet. 55, 198–208 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang, X. et al. Polygenic risk prediction: why and when out-of-sample prediction R2 can exceed SNP-based heritability. Am. J. Hum. Genet. 110, 1207–1215 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Larsson, H., Anckarsater, H., Råstam, M., Chang, Z. & Lichtenstein, P. Childhood attention‐deficit hyperactivity disorder as an extreme of a continuous trait: a quantitative genetic study of 8,500 twin pairs. J. Child Psychol. Psychiatry 53, 73–80 (2012).

    Article  PubMed  Google Scholar 

  16. Levy, F., Hay, D. A., McStephen, M., Wood, C. & Waldman, I. Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study. J. Am. Acad. Child Adolesc. Psychiatry 36, 737–744 (1997).

    Article  CAS  PubMed  Google Scholar 

  17. Derks, E. M. et al. Genetic and environmental influences on the relation between attention problems and attention deficit hyperactivity disorder. Behav. Genet. 38, 11–23 (2008).

    Article  PubMed  Google Scholar 

  18. Rönnegård, L. et al. Increasing the power of genome wide association studies in natural populations using repeated measures – evaluation and implementation. Methods Ecol. Evol. 7, 792–799 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ip, H. F. et al. Genetic association study of childhood aggression across raters, instruments, and age. Transl. Psychiatry 11, 413 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hormozdiari, F., Kostem, E., Kang, E. Y., Pasaniuc, B. & Eskin, E. Identifying causal variants at loci with multiple signals of association. Genetics 198, 497–508 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Benner, C. et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics 32, 1493–1501 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kichaev, G. et al. Integrating functional data to prioritize causal variants in statistical fine-mapping studies. PLoS Genet. 10, e1004722 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  24. De Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schipper, M. et al. Prioritizing effector genes at trait-associated loci using multimodal evidence. Nat. Genet. 57, 323–333 (2025).

    Article  CAS  PubMed  Google Scholar 

  26. Marees, A. T. et al. Potential influence of socioeconomic status on genetic correlations between alcohol consumption measures and mental health. Psychol. Med. 50, 484–498 (2020).

    Article  PubMed  Google Scholar 

  27. Groen-Blokhuis, M. M., Middeldorp, C. M., van Beijsterveldt, C. E. M. & Boomsma, D. I. Evidence for a causal association of low birth weight and attention problems. J. Am. Acad. Child Adolesc. Psychiatry 50, 1247–1254 (2011).

    Article  PubMed  Google Scholar 

  28. Bartels, M. et al. Childhood aggression and the co-occurrence of behavioural and emotional problems: results across ages 3–16 years from multiple raters in six cohorts in the EU-ACTION project. Eur. Child Adolesc. Psychiatry 27, 1105–1121 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Carey, G. Inference about genetic correlations. Behav. Genet. 18, 329–338 (1988).

    Article  CAS  PubMed  Google Scholar 

  30. Carlson, C. S. et al. Generalization and dilution of association results from European GWAS in populations of non-European ancestry: the PAGE study. PLoS Biol. 11, e1001661 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Boomsma, D. I. Aggression in children: unravelling the interplay of genes and environment through (epi)genetics and metabolomics. J. Pediatr. Neonatal Individ. Med. 4, e040251 (2015).

    Google Scholar 

  32. Middeldorp, C. M., Felix, J. F., Mahajan, A. & McCarthy, M. I. The Early Growth Genetics (EGG) and Early Genetics and Lifecourse Epidemiology (EAGLE) consortia: design, results and future prospects. Eur. J. Epidemiol. 34, 279–300 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Achenbach, T. M., Ivanova, M. Y. & Rescorla, L. A. Empirically based assessment and taxonomy of psychopathology for ages 1½–90+ years: developmental, multi-informant, and multicultural findings. Compr. Psychiatry 79, 4–18 (2017).

    Article  PubMed  Google Scholar 

  34. Goodman, R. Psychometric properties of the strengths and difficulties questionnaire. J. Am. Acad. Child Adolesc. Psychiatry 40, 1337–1345 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Tucker, G. et al. Two-variance-component model improves genetic prediction in family datasets. Am. J. Hum. Genet. 97, 677–690 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Minică, C. C., Dolan, C. V., Kampert, M. M. D., Boomsma, D. I. & Vink, J. M. Sandwich corrected standard errors in family-based genome-wide association studies. Eur. J. Hum. Genet. 23, 388–394 (2015).

    Article  PubMed  Google Scholar 

  37. Liu, Q. et al. Systematic assessment of imputation performance using the 1000 Genomes reference panels. Brief. Bioinform. 16, 549–562 (2015).

    Article  PubMed  Google Scholar 

  38. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Baselmans, B. M. L. et al. Multivariate genome-wide analyses of the well-being spectrum. Nat. Genet. 51, 445–451 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Koopmans, F. et al. SynGO: an evidence-based, expert-curated knowledge base for the synapse. Neuron 103, 217–234 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bulik-Sullivan, B. K. et al. An atlas of genetic correlations across human diseases and traits. Nat. Genet. 47, 1236–1241 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. van der Laan, C. N_weighted_GWAMA. Zenodo https://doi.org/10.5281/zenodo.15862079 (2025).

Download references

Acknowledgements

We would like to thank all participants, their parents and teachers for making this study possible. This project was supported by the ACTION project. ACTION received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement 602768. Cohort-specific acknowledgments and funding information are included in the Supplementary Note.

Author information

Authors and Affiliations

Authors

Contributions

C.M.v.d.L. conducted the central analyses and wrote the manuscript. M. Schipper performed the FLAMES analyses. H.F.I., B.St.P., T.Z., R. Pool, E.M.L.K., I.B., M.S.A., J.C.-D., S.A., I.M.N., K.B., T.P., H.Z., S.G., F.A., C.A.W., G.S., V.K., D.E.A., R. Border, R.E.P., J.A.P., E.T., N.V.-T., T.K., E.V., A.K.H., S. Llop, M.-J.L.-E., C.J., D.M.D., T.S.A., A.A., K.R., Q.C., Y.L., J.M., R. Bosch, N.L., A.N., J.E., K.L.G., J.J.M., X.T., S.M., J.G.S., A.A.S., L.M.E., K.S., L.S., R.V., C.J., Q.L., J.P., J. Horwood and W.E.C. performed cohort-specific analyses. J.-J.H., R.C., S.J., M.S.A., J.C.-D., S.A., R. Bosch, N.L., S.A.B., C.C., J. Haavik, A.K.H., A.S., S. Llop, M.-J.L.-E., L.A., M.M., N.V.-T., E.A.E., K.K., M. Stallings and M.R. coordinated genotyping. B.St.P., S.A., J.S., H.L., S. Lundström, R.J.R., A.G.U., F.A.H., H.S., Ø.H., A.R., A.K.H., S. Llop, M.-J.L.-E., L.A., M.K., M.M., J.R.H., G.P.S.K., P.R.N., A. Mamun, J.M.N., S.B., C.H., C.A.R., M. Stallings, S.W., T.L.W., L.E., J.L.S., A. Miller, A.H., K.B., J.S., M. Standl, J. Heinrich, J.B., J. Horwood, R. Pool, H.H.M., W.E.C., C.M.M, N.W., M.-R.J., W.I., A.C., T.E.M., A.J.O.W., C.E.P., K.L.K., D.M.D., M.S.A., J.C.-D., S.A., R. Bosch, N.L., S.A.B., J.A.R.-Q., R.C., A.M.W., T.K., E.V., T.R.-K., N.G.M., S.E.M., T.V., J.K., H.T., C.A.H., A.J.O., M.C., P.L., R. Pool, M.B., M.G.N. and D.I.B. collected samples and conducted phenotyping. B.St.P., J.S., H.L., S. Lundström, S.A.B., R.J.R., A.G.U., J.R.H., G.P.S.K., P.R.N., J.M.N., S.B., C.H., J. Hewitt, M. Stallings, S.W., L.E., J.L.S., H.H.M., W.E.C., C.M.M., N.W., M.-R.J., W.I., A.C., T.E.M., A.J.O.W., C.E.P., KL.K., D.M.D., J.A.R.-Q., H.S., A.S., S. Llop, M.-J.L.-E., L.A., M.K., G.M.W., M.M., G.M.W., T.R.-K., N.G.M., S.E.M., T.V., J.K., H.T., G.D.S., C.A.T., A.J.O., M.C., M.R., P.L., R. Plomin, M.B., M.G.N. and D.I.B. led the study design and principal investigator oversight. All above mentioned authors and E.M.D. contributed to critical revisions of the manuscript and approved the final version for submission.

Corresponding author

Correspondence to Camiel M. van der Laan.

Ethics declarations

Competing interests

J.A.R.-Q. was on the speakers’ bureau and/or acted as a consultant for Biogen, Idorsia, Casen-Recordati, Janssen-Cilag, Novartis, Takeda, Bial, Sincrolab, Neuraxpharm, BMS, Medice, Rubió, Uriach, Technofarma and Raffo in the last 3 years. He also received travel awards (air tickets and hotel) for taking part in psychiatric meetings from Idorsia, Janssen-Cilag, Rubió, Takeda, Bial and Medice. The Department of Psychiatry, chaired by him, received unrestricted educational and research support from the following companies in the last 3 years: Exeltis, Idorsia, Janssen-Cilag, Neuraxpharm, Oryzon, Roche, Probitas and Rubió. M.C. has received fees to give talks for TAKEDA and Laboratorios RUBIO. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Joshua Gray, Andrew McQuillin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Notes and Methods.

Reporting Summary

Peer Review File

Supplementary Data 1

Forest plots of cohort-specific GWAS regression estimates for all independent significant loci. Dots indicate regression estimates; bars indicate 95% confidence intervals. The red line represents the regression estimate from the overall meta-analysis. Sample sizes for the individual cohorts are shown in Supplementary Table 2.

Supplementary Data 2

Forest plots of stratified GWAS regression estimates for all independent significant loci. Dots indicate regression estimates; bars indicate 95% confidence intervals. The red line represents the regression estimate from the overall meta-analysis.

Supplementary Data 3

Locus plots of independent significant loci. More information for these loci is available in Supplementary Table 13.

Supplementary Tables 1–20

Supplementary Tables 1–20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van der Laan, C.M., Ip, H.F., Schipper, M. et al. Genome-wide association meta-analysis of childhood ADHD symptoms and diagnosis identifies new loci and potential effector genes. Nat Genet 57, 2427–2435 (2025). https://doi.org/10.1038/s41588-025-02295-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-025-02295-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing