Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Using fungible biosensors to evolve improved alkaloid biosyntheses

Abstract

A key bottleneck in the microbial production of therapeutic plant metabolites is identifying enzymes that can improve yield. The facile identification of genetically encoded biosensors can overcome this limitation and become part of a general method for engineering scaled production. We have developed a combined screening and selection approach that quickly refines the affinities and specificities of generalist transcription factors; using RamR as a starting point, we evolve highly specific (>100-fold preference) and sensitive (half-maximum effective concentration (EC50) < 30 μM) biosensors for the alkaloids tetrahydropapaverine, papaverine, glaucine, rotundine and noscapine. High-resolution structures reveal multiple evolutionary avenues for the malleable effector-binding site and the creation of new pockets for different chemical moieties. These sensors further enabled the evolution of a streamlined pathway for tetrahydropapaverine, a precursor to four modern pharmaceuticals, collapsing multiple methylation steps into a single evolved enzyme. Our methods for evolving biosensors enable the rapid engineering of pathways for therapeutic alkaloids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Screening identifies a biosensor responsive to BIAs.
Fig. 2: The SELIS approach for biosensor evolution.
Fig. 3: Evolution of highly specific BIA sensors from a generalist template.
Fig. 4: Crystal structures of evolved biosensors bound to cognate BIAs.
Fig. 5: Unique molecular adaptations confer alkaloid specificity.
Fig. 6: Evolved biosensor enables a new THP-biosynthetic pathway.

Similar content being viewed by others

Data availability

The coordinates for the complex structures have been deposited in the PDB: RamR in complex with berberine, PDB 3VW2; PAP4 in complex with PAP, PDB 7N53; ROTU4 in complex with ROTU, PDB 7N4W; NOS4 in complex with NOS, PDB 7N4Z; GLAU4 in complex with GLAU, PDB 7N54. Protein sequence information was retrieved from the NCBI database: RamR, 3VVX_A; TtgR, WP_010952495.1; QacR, WP_001807342.1; SmeT, WP_014648459.1; NalD, WP_003092152.1; Bm3R1, WP_013083972.1; GfOMT1, AKO60152.1. Plasmid sequences relevant to this study (Supplementary Notes 1 and 2) were deposited in Addgene. Source data are provided with this paper.

Code availability

Code used to generate bar plots, dose–response functions and orthogonality matrices presented in this text is accessible at https://github.com/simonsnitz/plotting.

References

  1. Ro, D.-K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    CAS  PubMed  Google Scholar 

  2. Luo, X. et al. Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nature 567, 123–126 (2019).

    CAS  PubMed  Google Scholar 

  3. Galanie, S., Thodey, K., Trenchard, I. J., Interrante, M. F. & Smolke, C. D. Complete biosynthesis of opioids in yeast. Science 349, 1095–1100 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakagawa, A. et al. Total biosynthesis of opiates by stepwise fermentation using engineered Escherichia coli. Nat. Commun. 7, 10390 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Srinivasan, P. & Smolke, C. D. Biosynthesis of medicinal tropane alkaloids in yeast. Nature 585, 614–619 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hodgman, C. E. & Jewett, M. C. Cell-free synthetic biology: thinking outside the cell. Metab. Eng. 14, 261–269 (2012).

    CAS  PubMed  Google Scholar 

  7. Rienzo, M. et al. High-throughput screening for high-efficiency small-molecule biosynthesis. Metab. Eng. 63, 102–125 (2021).

    CAS  PubMed  Google Scholar 

  8. Mitchler, M. M., Garcia, J. M., Montero, N. E. & Williams, G. J. Transcription factor-based biosensors: a molecular-guided approach for natural product engineering. Curr. Opin. Biotechnol. 69, 172–181 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Hossain, G. S., Saini, M., Miyake, R., Ling, H. & Chang, M. W. Genetic biosensor design for natural product biosynthesis in microorganisms. Trends Biotechnol. 38, 797–810 (2020).

    CAS  PubMed  Google Scholar 

  10. Della Corte, D. et al. Engineering and application of a biosensor with focused ligand specificity. Nat. Commun. 11, 4851 (2020).

    PubMed  PubMed Central  Google Scholar 

  11. Yao, J. et al. Developing a highly efficient hydroxytyrosol whole-cell catalyst by de-bottlenecking rate-limiting steps. Nat. Commun. 11, 1515 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Snoek, T. et al. Evolution-guided engineering of small-molecule biosensors. Nucleic Acids Res. 48, e3 (2020).

    CAS  PubMed  Google Scholar 

  13. Machado, L., F. M., Currin, A. & Dixon, N. Directed evolution of the PcaV allosteric transcription factor to generate a biosensor for aromatic aldehydes. J. Biol. Eng. 13, 91 (2019).

    Google Scholar 

  14. Trudeau, D. L. & Tawfik, D. S. Protein engineers turned evolutionists—the quest for the optimal starting point. Curr. Opin. Biotechnol. 60, 46–52 (2019).

    CAS  PubMed  Google Scholar 

  15. Wade, H. MD recognition by MDR gene regulators. Curr. Opin. Struct. Biol. 20, 489–496 (2010).

    CAS  PubMed  Google Scholar 

  16. Xiong, D. et al. Improving key enzyme activity in phenylpropanoid pathway with a designed biosensor. Metab. Eng. 40, 115–123 (2017).

    CAS  PubMed  Google Scholar 

  17. Li, Y. et al. Complete biosynthesis of noscapine and halogenated alkaloids in yeast. Proc. Natl Acad. Sci. USA 115, E3922–E3931 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Valentic, T. R., Payne, J. T. & Smolke, C. D. Structure-guided engineering of a scoulerine 9-O-methyltransferase enables the biosynthesis of tetrahydropalmatrubine and tetrahydropalmatine in yeast. ACS Catal. 10, 4497–4509 (2020).

    CAS  Google Scholar 

  19. Stanton, B. C. et al. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat. Chem. Biol. 10, 99–105 (2014).

    CAS  PubMed  Google Scholar 

  20. Morita, Y., Cao, L., Gould, V. C., Avison, M. B. & Poole, K. nalD encodes a second repressor of the mexABoprM multidrug efflux operon of Pseudomonas aeruginosa. J. Bacteriol. 188, 8649–8654 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sánchez, P., Alonso, A. & Martinez, J. L. Cloning and characterization of SmeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump SmeDEF. Antimicrob. Agents Chemother. 46, 3386–3393 (2002).

    PubMed  PubMed Central  Google Scholar 

  22. Yamasaki, S. et al. The crystal structure of multidrug-resistance regulator RamR with multiple drugs. Nat. Commun. 4, 2078 (2013).

    PubMed  Google Scholar 

  23. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    CAS  PubMed  Google Scholar 

  24. Tominaga, M., Nozaki, K., Umeno, D., Ishii, J. & Kondo, A. Robust and flexible platform for directed evolution of yeast genetic switches. Nat. Commun. 12, 1846 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gatignol, A., Durand, H. & Tiraby, G. Bleomycin resistance conferred by a drug-binding protein. FEBS Lett. 230, 171–175 (1988).

    CAS  PubMed  Google Scholar 

  26. d’Oelsnitz, S., Nguyen, V., Alper, H. S. & Ellington, A. D. Evolving a generalist biosensor for bicyclic monoterpenes. ACS Synth. Biol. 11, 265–272 (2022).

    PubMed  Google Scholar 

  27. Ehrenworth, A. M. & Peralta-Yahya, P. Accelerating the semisynthesis of alkaloid-based drugs through metabolic engineering. Nat. Chem. Biol. 13, 249–258 (2017).

    CAS  PubMed  Google Scholar 

  28. Agarwal, P. et al. 3′O-methyltransferase, Ps3′OMT, from opium poppy: involvement in papaverine biosynthesis. Plant Cell Rep. 38, 1235–1248 (2019).

    CAS  PubMed  Google Scholar 

  29. Chang, L., Hagel, J. M. & Facchini, P. J. Isolation and characterization of O-methyltransferases involved in the biosynthesis of glaucine in Glaucium flavum. Plant Physiol. 169, 1127–1140 (2015).

    PubMed  PubMed Central  Google Scholar 

  30. Collins, C. H., Arnold, F. H. & Leadbetter, J. R. Directed evolution of Vibrio fischeri LuxR for increased sensitivity to a broad spectrum of acyl-homoserine lactones. Mol. Microbiol. 55, 712–723 (2005).

    CAS  PubMed  Google Scholar 

  31. Collins, C. H., Leadbetter, J. R. & Arnold, F. H. Dual selection enhances the signaling specificity of a variant of the quorum-sensing transcriptional activator LuxR. Nat. Biotechnol. 24, 708–712 (2006).

    CAS  PubMed  Google Scholar 

  32. Renata, H., Wang, Z. J. & Arnold, F. H. Expanding the enzyme universe: accessing non-natural reactions by mechanism-guided directed evolution. Angew. Chem. Int. Ed. Engl. 54, 3351–3367 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Goldsmith, M. & Tawfik, D. S. Directed enzyme evolution: beyond the low-hanging fruit. Curr. Opin. Struct. Biol. 22, 406–412 (2012).

    CAS  PubMed  Google Scholar 

  34. Wu, J. et al. Design and application of a lactulose biosensor. Sci. Rep. 7, 45994 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nakagawa, A. et al. A bacterial platform for fermentative production of plant alkaloids. Nat. Commun. 2, 326 (2011).

    PubMed  Google Scholar 

  36. Wei, T., Cheng, B.-Y. & Liu, J.-Z. Genome engineering Escherichia coli for l-DOPA overproduction from glucose. Sci. Rep. 6, 30080 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Chen, H., Wang, Z., Cai, H. & Zhou, C. Progress in the microbial production of S-adenosyl-l-methionine. World J. Microbiol. Biotechnol. 32, 153 (2016).

    CAS  PubMed  Google Scholar 

  38. Bohand, X., Jordan, D. & Dubois, F. Managing the risk of shortages and medication errors with curares during the COVID-19 pandemic: a hospital pharmacy experience. Eur. J. Hosp. Pharm. https://doi.org/10.1136/ejhpharm-2020-002605 (2021).

    Article  PubMed  Google Scholar 

  39. Ricci, J. A. et al. Comparing the outcomes of different agents to treat vasospasm at microsurgical anastomosis during the papaverine shortage. Plast. Reconstr. Surg. 138, 401e–408e (2016).

    PubMed  Google Scholar 

  40. Welsch, M. E., Snyder, S. A. & Stockwell, B. R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 14, 347–361 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Cravens, A., Payne, J. & Smolke, C. D. Synthetic biology strategies for microbial biosynthesis of plant natural products. Nat. Commun. 10, 2142 (2019).

    PubMed  PubMed Central  Google Scholar 

  42. Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019).

    CAS  PubMed  Google Scholar 

  43. Hartline, C. J., Schmitz, A. C., Han, Y. & Zhang, F. Dynamic control in metabolic engineering: theories, tools, and applications. Metab. Eng. 63, 126–140 (2021).

    CAS  PubMed  Google Scholar 

  44. Rugbjerg, P., Sarup-Lytzen, K., Nagy, M. & Sommer, M. O. A. Synthetic addiction extends the productive life time of engineered Escherichia coli populations. Proc. Natl Acad. Sci. USA 115, 2347–2352 (2018).

    PubMed  PubMed Central  Google Scholar 

  45. Wan, X. et al. Cascaded amplifying circuits enable ultrasensitive cellular sensors for toxic metals. Nat. Chem. Biol. 15, 540–548 (2019).

    CAS  PubMed  Google Scholar 

  46. Ho, J. M. L., Miller, C. A., Parks, S. E., Mattia, J. R. & Bennett, M. R. A suppressor tRNA-mediated feedforward loop eliminates leaky gene expression in bacteria. Nucleic Acids Res. 49, e25 (2021).

    CAS  PubMed  Google Scholar 

  47. Nagahashi, S. et al. Regulation by tetracycline of gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 255, 372–375 (1997).

    CAS  PubMed  Google Scholar 

  48. Gatz, C. & Quail, P. H. Tn10-encoded tet repressor can regulate an operator-containing plant promoter. Proc. Natl Acad. Sci. USA 85, 1394–1397 (1988).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gossen, M. & Bujard, H. Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. Proc. Natl Acad. Sci. USA 89, 5547–5551 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Struct. Biol. 60, 2126–2132 (2004).

    Google Scholar 

  52. Williams, C. J. et al. MolProbity: more and better reference data for improved all-atom structure validation. Protein Sci. 27, 293–315 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding from DARPA Soils (HR00111920019 to A.D.E.), Welch (F-1654 to A.D.E.) and AFSOR (FA9550-14-1-0089 to H.S.A. and A.D.E.) is acknowledged. This work is partially supported by grants from the National Institutes of Health (R01GM104896 and R01GM125882 to Y.Z.). We thank K.J. Blake in the Chemistry Department at the University of Texas at Austin for performing LC–MS analysis and S. Kar for his thoughtful advice on selection circuit design.

Author information

Authors and Affiliations

Authors

Contributions

S.d.O. designed the experiments and performed biosensor evolution and characterization. S.d.O. and R.T. performed protein purification. Enzyme evolution was carried out by S.d.O. and K.J., and X-ray crystallography was conducted by W.K. and N.T.B. The manuscript was written by S.d.O. with support from A.D.E., R.T., Y.Z. and H.S.A. S.d.O., A.D.E. and H.S.A. supervised all aspects of the study.

Corresponding authors

Correspondence to Simon d’Oelsnitz or Andrew D. Ellington.

Ethics declarations

Competing interests

S.d.O., K.J., R.T. and A.D.E. have filed two patent applications on materials described in this text. R.T. and A.D.E have equity in GRO Biosciences, a company developing protein therapeutics. The other authors declare no conflict of interest.

Peer review

Peer review information

Nature Chemical Biology thanks Michael Jensen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Background fluorescence measurements for all RamR generations.

The same promoter was used to express variants from each evolutionary trajectory (see methods). Individual fluorescent measurements for each condition performed in biological triplicate are shown alongside error bars that represent the SE ± the mean.

Source data

Extended Data Fig. 2 Cross reactivity of all evolved sensors.

Fold-response is shown for all BIAs for the native RamR protein, the first, second, third, and fourth generations from top to bottom, respectively. 100 μM of the indicated BIA was applied in all conditions. Measurements for each condition represent the average of three biological replicates.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Tables 1–3 and Notes 1 and 2

Reporting Summary

Source data

Source Data Fig. 1

Contains .XLSX sheets with statistical source data.

Source Data Fig. 3

Contains .XLSX sheets with statistical source data.

Source Data Fig. 6

Contains .XLSX sheets with statistical source data.

Source Data Extended Data Fig. 1

Contains .XLSX sheets with statistical source data.

Source Data Extended Data Fig. 2

Contains .XLSX sheets with statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

d’Oelsnitz, S., Kim, W., Burkholder, N.T. et al. Using fungible biosensors to evolve improved alkaloid biosyntheses. Nat Chem Biol 18, 981–989 (2022). https://doi.org/10.1038/s41589-022-01072-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-022-01072-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing