Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Partitioning of a 2-bit hash function across 66 communicating cells

Abstract

Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. Here, we report design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated using a 2-bit version of the MD5 hashing algorithm, which is an early predecessor to the cryptographic functions underlying cryptocurrency. One iteration requires 110 logic gates, which were partitioned across 66 Escherichia coli strains, requiring the introduction of a total of 1.1 Mb of recombinant DNA into their genomes. The strains were individually experimentally verified to integrate their assigned input signals, process this information correctly and propagate the result to the cell in the next layer. This work demonstrates the potential to obtain programable control of multicellular biological processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multicellular implementation of the MD5 circuit.
Fig. 2: Logic gates and cell−cell communication used to build subcircuits.
Fig. 3: Division of the 2-bit MD5 circuit into subcircuits.
Fig. 4: Multicellular computation of the 2-bit MD5 circuit.

Similar content being viewed by others

Data availability

Sequences for strains and plasmids used in this work are included in the Supplementary Information file. GenBank files of full constructs for each subcircuit can be found at https://doi.org/10.5281/zenodo.13247698 ref. 121. Additional data are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

Cello 2.1 is available at cellocad.org and can be accessed via Google account. All files for Cello 2.1 can be found at https://github.com/CIDARLAB/Cello-v2-1-Core/tree/main/library. The script used to simulate the MD5 algorithm can be found at https://github.com/VoigtLab/MD5_Circuit. The manual for Cello 2.1 is provided as Supplementary Software.

References

  1. Abelson, H. et al. Amorphous computing. Commun. ACM 43, 74–82 (2000).

    Google Scholar 

  2. Davidson, E. H. Genomic Regulatory Systems (Academic Press, 2001).

  3. Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B 237, 37–72 (1952).

    Google Scholar 

  4. Wolfram, S. A New Kind of Science (Wolfram Media, 2002).

  5. Barcena Menendez, D., Senthivel, V. R. & Isalan, M. Sender–receiver systems and applying information theory for quantitative synthetic biology. Curr. Opin. Biotechnol. 31, 101–107 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Karkaria, B. D., Treloar, N. J., Barnes, C. P. & Fedorec, A. J. H. From microbial communities to distributed computing systems. Front. Bioeng. Biotechnol. 8, 834 (2020).

    PubMed  PubMed Central  Google Scholar 

  7. Zhang, Y. et al. A system hierarchy for brain-inspired computing. Nature 586, 378–384 (2020).

    CAS  PubMed  Google Scholar 

  8. Grozinger, L. et al. Pathways to cellular supremacy in biocomputing. Nat. Commun. 10, 5250 (2019).

    PubMed  PubMed Central  Google Scholar 

  9. Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).

    PubMed  PubMed Central  Google Scholar 

  10. Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).

    CAS  PubMed  Google Scholar 

  12. McAdams, H. H. & Arkin, A. Gene regulation: towards a circuit engineering discipline. Curr. Biol. 10, R318–R320 (2000).

    CAS  PubMed  Google Scholar 

  13. Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A. & Densmore, D. Genetic circuit design automation with Cello 2.0. Nat. Protoc. 17, 1097–1113 (2022).

    CAS  PubMed  Google Scholar 

  14. Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).

    PubMed  Google Scholar 

  15. Lucks, J. B., Qi, L., Whitaker, W. R. & Arkin, A. P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

    PubMed  Google Scholar 

  16. Nielsen, A. A., Segall-Shapiro, T. H. & Voigt, C. A. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr. Opin. Chem. Biol. 17, 878–892 (2013).

    CAS  PubMed  Google Scholar 

  17. Fernandez-Rodriguez, J., Yang, L., Gorochowski, T. E., Gordon, D. B. & Voigt, C. A. Memory and combinatorial logic based on DNA inversions: dynamics and evolutionary stability. ACS Synth. Biol. 4, 1361–1372 (2015).

    CAS  PubMed  Google Scholar 

  18. Shin, J., Zhang, S., Der, B. S., Nielsen, A. A. & Voigt, C. A. Programming Escherichia coli to function as a digital display. Mol. Syst. Biol. 16, e9401 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bragdon, M. D. J. et al. Cooperative assembly confers regulatory specificity and long-term genetic circuit stability. Cell 186, 3810–3825 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Sleight, S. C., Bartley, B. A., Lieviant, J. A. & Sauro, H. M. Designing and engineering evolutionary robust genetic circuits. J. Biol. Eng. 4, 12 (2010).

    PubMed  PubMed Central  Google Scholar 

  21. Ceroni, F., Algar, R., Stan, G. B. & Ellis, T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12, 415–418 (2015).

    CAS  PubMed  Google Scholar 

  22. Huang, H. H. et al. dCas9 regulator to neutralize competition in CRISPRi circuits. Nat. Commun. 12, 1692 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McBride, C. D., Grunberg, T. W. & Del Vecchio, D. Design of genetic circuits that are robust to resource competition. Curr. Opin. Syst. Biol. https://doi.org/10.1016/j.coisb.2021.100357 (2021).

  24. Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).

    CAS  PubMed  Google Scholar 

  25. Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5, 842–848 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Şimşek, E., Yao, Y., Lee, D. & You, L. Toward predictive engineering of gene circuits. Trends Biotechnol. 41, 760–768 (2023).

    PubMed  Google Scholar 

  27. Zhang, R. et al. Topology-dependent interference of synthetic gene circuit function by growth feedback. Nat. Chem. Biol. 16, 695–701 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang, R. et al. Winner-takes-all resource competition redirects cascading cell fate transitions. Nat. Commun. https://doi.org/10.1038/s41467-021-21125-3 (2021).

  29. Barajas, C., Huang, H. H., Gibson, J., Sandoval, L. & Del Vecchio, D. Feedforward growth rate control mitigates gene activation burden. Nat. Commun. 13, 7054 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen, Y. et al. Genetic circuit design automation for yeast. Nat. Microbiol. 5, 1349–1360 (2020).

    CAS  PubMed  Google Scholar 

  31. Guan, Y. et al. Mitigating host burden of genetic circuits by engineering autonegatively regulated parts and improving functional prediction. ACS Synth. Biol. 11, 2361–2371 (2022).

    CAS  PubMed  Google Scholar 

  32. Liu, Q., Schumacher, J., Wan, X., Lou, C. & Wang, B. Orthogonality and burdens of heterologous AND gate gene circuits in E. coli. ACS Synth. Biol. 7, 553–564 (2018).

    CAS  PubMed  Google Scholar 

  33. Park, Y., Espah Borujeni, A., Gorochowski, T. E., Shin, J. & Voigt, C. A. Precision design of stable genetic circuits carried in highly-insulated E. coli genomic landing pads. Mol. Syst. Biol. 16, e9584 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Barajas, C. & Del Vecchio, D. Synthetic biology by controller design. Curr. Opin. Biotechnol. 78, 102837 (2022).

    CAS  PubMed  Google Scholar 

  35. Grob, A., Di Blasi, R. & Ceroni, F. Experimental tools to reduce the burden of bacterial synthetic biology. Curr. Opin. Syst. Biol. 28, 100393 (2021).

    CAS  Google Scholar 

  36. Son, H. I., Weiss, A. & You, L. Design patterns for engineering genetic stability. Curr. Opin. Biomed. Eng. 19, 100297 (2021).

    PubMed  PubMed Central  Google Scholar 

  37. Ceroni, F. et al. Burden-driven feedback control of gene expression. Nat. Methods 15, 387–393 (2018).

    CAS  PubMed  Google Scholar 

  38. Lou, C. et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol. Syst. Biol. 6, 350 (2010).

    PubMed  PubMed Central  Google Scholar 

  39. Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215 (2011).

    CAS  PubMed  Google Scholar 

  40. Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Du, P. et al. De novo design of an intercellular signaling toolbox for multi-channel cell−cell communication and biological computation. Nat. Commun. 11, 4226 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Macia, J. et al. Implementation of complex biological logic circuits using spatially distributed multicellular consortia. PLoS Comput. Biol. 12, e1004685 (2016).

    PubMed  PubMed Central  Google Scholar 

  43. Sexton, J. T. & Tabor, J. J. Multiplexing cell−cell communication. Mol. Syst. Biol. 16, e9618 (2020).

    PubMed  PubMed Central  Google Scholar 

  44. Garg, A., Lohmueller, J. J., Silver, P. A. & Armel, T. Z. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res. 40, 7584–7595 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Green, A. A. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Hsia, J., Holtz, W. J., Maharbiz, M. M., Arcak, M. & Keasling, J. D. Modular synthetic inverters from zinc finger proteins and small RNAs. PLoS ONE 11, e0149483 (2016).

    PubMed  PubMed Central  Google Scholar 

  47. Jusiak, B., Cleto, S., Perez-Pinera, P. & Lu, T. K. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol. 34, 535–547 (2016).

    CAS  PubMed  Google Scholar 

  48. Nielsen, A. A. & Voigt, C. A. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10, 763 (2014).

    PubMed  PubMed Central  Google Scholar 

  49. Stanton, B. C. et al. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat. Chem. Biol. 10, 99–105 (2014).

    CAS  PubMed  Google Scholar 

  50. Taketani, M. et al. Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nat. Biotechnol. 38, 962–969 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Didovyk, A., Borek, B., Hasty, J. & Tsimring, L. Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9. ACS Synth. Biol. 5, 81–88 (2016).

    CAS  PubMed  Google Scholar 

  52. Rondon, R. E., Groseclose, T. M., Short, A. E. & Wilson, C. J. Transcriptional programming using engineered systems of transcription factors and genetic architectures. Nat. Commun. 10, 4784 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying genetic logic gates. Science 340, 599–603 (2013).

    CAS  PubMed  Google Scholar 

  54. Zhang, S. & Voigt, C. A. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. Nucleic Acids Res. 46, 11115–11125 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Basu, S., Mehreja, R., Thiberge, S., Chen, M. T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl Acad. Sci. USA 101, 6355–6360 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl Acad. Sci. USA 101, 8414–8419 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Ackers, G. K., Johnson, A. D. & Shea, M. A. Quantitative model for gene regulation by lambda phage repressor. Proc. Natl Acad. Sci. USA 79, 1129–1133 (1982).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    CAS  PubMed  Google Scholar 

  59. Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Google Scholar 

  61. Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Xiong, L. L., Garrett, M. A., Buss, M. T., Kornfield, J. A. & Shapiro, M. G. Tunable temperature-sensitive transcriptional activation based on lambda repressor. ACS Synth. Biol. 11, 2518–2522 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Karig, D. et al. Stochastic turing patterns in a synthetic bacterial population. Proc. Natl Acad. Sci. USA 115, 6572–6577 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Liu, C. et al. Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238–241 (2011).

    CAS  PubMed  Google Scholar 

  65. Ptashne, M. A Genetic Switch: Phage Lambda Revisited. 3rd ed. (Cold Spring Harbor Laboratory Press, 2004).

  66. Itzkovitz, S., Tlusty, T. & Alon, U. Coding limits on the number of transcription factors. BMC Genomics 7, 239 (2006).

    PubMed  PubMed Central  Google Scholar 

  67. Payne, S. & You, L. Engineered cell−cell communication and its applications. Adv. Biochem Eng. Biotechnol. 146, 97–121 (2014).

    PubMed  Google Scholar 

  68. Duncker, K. E., Holmes, Z. A. & You, L. Engineered microbial consortia: strategies and applications. Microb. Cell Fact. 20, 211 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Kylilis, N., Tuza, Z. A., Stan, G.-B. & Polizzi, K. M. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat. Commun. 9, 2677 (2018).

    PubMed  PubMed Central  Google Scholar 

  70. Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl Acad. Sci. USA 104, 10435–10440 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Bacchus, W. & Fussenegger, M. Engineering of synthetic intercellular communication systems. Metab. Eng. 16, 33–41 (2013).

    CAS  PubMed  Google Scholar 

  72. Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26, 787–793 (2008).

    CAS  PubMed  Google Scholar 

  73. Weiss, R. & Knight, T. F. Engineered communications for microbial robotics. In Revised Papers from the 6th International Workshop on DNA-Based Computers: DNA Computing (eds. Condon, A. & Rozenberg, G.) 1−16 (Springer-Verlag, 2001).

  74. Kong, W., Celik, V., Liao, C., Hua, Q. & Lu, T. Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresour. Bioprocess. 1, 24 (2014).

    Google Scholar 

  75. Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).

    CAS  PubMed  Google Scholar 

  76. Vaiana, C. A. et al. Characterizing chemical signaling between engineered ‘microbial sentinels’ in porous microplates. Mol. Syst. Biol. 18, e10785 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen, T., Ali Al-Radhawi, M., Voigt, C. A. & Sontag, E. D. A synthetic distributed genetic multi-bit counter. iScience 24, 103526 (2021).

    PubMed  PubMed Central  Google Scholar 

  78. Al-Radhawi, M. A. et al. Distributed implementation of Boolean functions by transcriptional synthetic circuits. ACS Synth. Biol. 9, 2172–2187 (2020).

    CAS  PubMed  Google Scholar 

  79. Balagaddé, F. K. et al. A synthetic Escherichia coli predator−prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).

    PubMed  PubMed Central  Google Scholar 

  80. Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Payne, S. et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria. Mol. Syst. Biol. 9, 697 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Alnahhas, R. N. et al. Majority sensing in synthetic microbial consortia. Nat. Commun. 11, 3659 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cao, Y. et al. Collective space-sensing coordinates pattern scaling in engineered bacteria. Cell 165, 620–630 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Ausländer, D. et al. Programmable full-adder computations in communicating three-dimensional cell cultures. Nat. Methods 15, 57–60 (2018).

    PubMed  Google Scholar 

  85. Regot, S. et al. Distributed biological computation with multicellular engineered networks. Nature 469, 207–211 (2011).

    CAS  PubMed  Google Scholar 

  86. Sarkar, K., Chakraborty, S., Bonnerjee, D. & Bagh, S. Distributed computing with engineered bacteria and its application in solving chemically generated 2 × 2 maze problems. ACS Synth. Biol. 10, 2456–2464 (2021).

    CAS  PubMed  Google Scholar 

  87. Carignano, A. et al. Modular, robust, and extendible multicellular circuit design in yeast. eLife 11, e74540 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Urrios, A. et al. A synthetic multicellular memory device. ACS Synth. Biol. 5, 862–873 (2016).

    CAS  PubMed  Google Scholar 

  89. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P. & Schulz, C. Recent advances in graph partitioning. Algorithm Engineering (eds Kliemann, L. & Sanders, P.) 117–158 (Springer, 2016).

  90. Hendrickson, B. & Kolda, T. G. Graph partitioning models for parallel computing. Parallel Comput. 26, 1519–1534 (2000).

    Google Scholar 

  91. Augeri, C. J. & Ali, H. H. New graph-based algorithms for partitioning VLSI circuits. In 2004 IEEE International Symposium on Circuits and Systems (ISCAS) Vol. 4, 521−524 (IEEE, 2004).

  92. Chen, Y. P., Wang, T. C. & Wong, D. F. A graph partitioning problem for multi-chip design. In 1993 IEEE International Symposium on Circuits and Systems (ISCAS) 1778−1781 (IEEE, 1993).

  93. Perl, Y. & Snir, M. Circuit partitioning with size and connection constraints. Networks 13, 365–375 (1983).

    Google Scholar 

  94. Diestel, R. Graph Theory 5th edn (Springer-Verlag, 2017).

  95. Matula, D. W. & Beck, L. L. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30, 417–427 (1983).

    Google Scholar 

  96. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Lou, C., Stanton, B., Chen, Y. J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol. 30, 1137–1142 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Chen, Y.-J. et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659–664 (2013).

    CAS  PubMed  Google Scholar 

  99. Shao, B. et al. Single-cell measurement of plasmid copy number and promoter activity. Nat. Commun. 12, 1475 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Macia, J. & Sole, R. How to make a synthetic multicellular computer. PLoS ONE 9, e81248 (2014).

    PubMed  PubMed Central  Google Scholar 

  101. Ausländer, S., Ausländer, D., Lang, P. F., Kemi, M. & Fussenegger, M. Design of multipartite transcription factors for multiplexed logic genome integration control in mammalian cells. ACS Synth. Biol. 9, 2964–2970 (2020).

    PubMed  PubMed Central  Google Scholar 

  102. Groseclose, T. M., Rondon, R. E., Herde, Z. D., Aldrete, C. A. & Wilson, C. J. Engineered systems of inducible anti-repressors for the next generation of biological programming. Nat. Commun. 11, 4440 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Groseclose, T. M. et al. Biomolecular systems engineering: unlocking the potential of engineered allostery via the lactose repressor topology. Annu. Rev. Biophys. 50, 303–321 (2021).

    CAS  PubMed  Google Scholar 

  104. Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).

    CAS  PubMed  Google Scholar 

  105. DeWeerdt, S. How to map the brain. Nature 571, S6–S8 (2019).

    CAS  PubMed  Google Scholar 

  106. Prindle, A. et al. A sensing array of radically coupled genetic ‘biopixels’. Nature 481, 39–44 (2011).

    PubMed  PubMed Central  Google Scholar 

  107. Ben Said, S., Tecon, R., Borer, B. & Or, D. The engineering of spatially linked microbial consortia—potential and perspectives. Curr. Opin. Biotechnol. 62, 137–145 (2020).

    PubMed  PubMed Central  Google Scholar 

  108. Osmekhina, E. et al. Controlled communication between physically separated bacterial populations in a microfluidic device. Commun. Biol. 1, 97 (2018).

    PubMed  PubMed Central  Google Scholar 

  109. Sardanyés, J., Bonforti, A., Conde, N., Solé, R. & Macia, J. Computational implementation of a tunable multicellular memory circuit for engineered eukaryotic consortia. Front. Physiol. 6, 281 (2015).

    PubMed  PubMed Central  Google Scholar 

  110. Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell−cell signaling. Science 361, 156–162 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Shirriff, K. Mining Bitcoin with pencil and paper: 0.67 hashes per day. http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.htmlKen Shirriff's Blog (2014).

  112. Goñi-Moreno, A. & Amos, M. DiSCUS: a simulation platform for conjugation computing. In Unconventional Computation and Natural Computation (eds. Calude, C. S. & Dinneen, M. J.) 181−191 (Springer International Publishing, 2015).

  113. Gutiérrez, M. et al. A new improved and extended version of the multicell bacterial simulator gro. ACS Synth. Biol. 6, 1496–1508 (2017).

    PubMed  Google Scholar 

  114. Gorochowski, T. E. Agent-based modelling in synthetic biology. Essays Biochem. 60, 325–336 (2016).

    PubMed  PubMed Central  Google Scholar 

  115. Naylor, J. et al. Simbiotics: a multiscale integrative platform for 3D modeling of bacterial populations. ACS Synth. Biol. 6, 1194–1210 (2017).

    CAS  PubMed  Google Scholar 

  116. Rivest, R. The MD5 message-digest algorithm. RFC 10.17487/RFC1321 (1992).

  117. Wolf, C. Design and Implementation of the Yosys Open SYnthesis Suite https://yosyshq.net/yosys/files/yosys_manual.pdf (2013).

  118. Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2022).

    PubMed Central  Google Scholar 

  119. Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389–W394 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Voight, C & Sun, J. Subcircuit genome files. Zenodo https://doi.org/10.5281/zenodo.13247698 (2004).

Download references

Acknowledgements

We thank J. Roberts (Boston University) and S. Oliveira (North Carolina A&T State University) for their help in developing Cello 2.1. This work was supported by funding from the National Science Foundation SemiSynBio program awards CCF-1807575 (J.P., J.S., C.A.V.) and CCF-1849588 (W.C., E.D.S., C.A.V.); DARPA Synergistic Discovery and Design program (SD2) award FA8750-17-C-0229 (J.P., J.S., C.A.V.); an award from the Schmidt Innovation Fellows Program (J.P., J.S., C.A.V.); Air Force Office of Scientific Research award FA9550-22-1-0316 (W.C., E.D.S); National Science Foundation award 2211040 (Y.Z., D.D.) and National Science Foundation’s Semiconductor Synthetic Biology for Information Storage and Retrieval award 2027045 (C.K., W.Z.H.).

Author information

Authors and Affiliations

Authors

Contributions

J.P., J.S. and C.A.V. conceived the study and designed the experiments. J.P. and J.S. performed the experiments and analyzed the data. W.C., Y.Z., D.D. and E.S. implemented the partitioning and edge coloring algorithm. C.K., W.Z.H. and D.D. developed Cello 2.1. J.P., J.S. and C.A.V. wrote the manuscript.

Corresponding author

Correspondence to Christopher A. Voigt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks Irene Otero-Muras, Xiao-Jun Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1−16, Gate Datasheets, Subcircuit Datasheets, Tables 1−11, Methods and Software.

Reporting Summary

Supplementary Data

Source data for supplementary figures.

Source data

Source Data Fig. 1

Data for Fig. 1d.

Source Data Fig. 2

Data for Fig. 2c−e,g.

Source Data Fig. 3

Data for Fig. 3d,e.

Source Data Fig. 4

Data for Fig. 4b.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmakumar, J.P., Sun, J.J., Cho, W. et al. Partitioning of a 2-bit hash function across 66 communicating cells. Nat Chem Biol 21, 268–279 (2025). https://doi.org/10.1038/s41589-024-01730-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-024-01730-1

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology