Abstract
Powerful distributed computing can be achieved by communicating cells that individually perform simple operations. Here, we report design software to divide a large genetic circuit across cells as well as the genetic parts to implement the subcircuits in their genomes. These tools were demonstrated using a 2-bit version of the MD5 hashing algorithm, which is an early predecessor to the cryptographic functions underlying cryptocurrency. One iteration requires 110 logic gates, which were partitioned across 66 Escherichia coli strains, requiring the introduction of a total of 1.1 Mb of recombinant DNA into their genomes. The strains were individually experimentally verified to integrate their assigned input signals, process this information correctly and propagate the result to the cell in the next layer. This work demonstrates the potential to obtain programable control of multicellular biological processes.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout




Similar content being viewed by others
Data availability
Sequences for strains and plasmids used in this work are included in the Supplementary Information file. GenBank files of full constructs for each subcircuit can be found at https://doi.org/10.5281/zenodo.13247698 ref. 121. Additional data are available from the corresponding author upon reasonable request. Source data are provided with this paper.
Code availability
Cello 2.1 is available at cellocad.org and can be accessed via Google account. All files for Cello 2.1 can be found at https://github.com/CIDARLAB/Cello-v2-1-Core/tree/main/library. The script used to simulate the MD5 algorithm can be found at https://github.com/VoigtLab/MD5_Circuit. The manual for Cello 2.1 is provided as Supplementary Software.
References
Abelson, H. et al. Amorphous computing. Commun. ACM 43, 74–82 (2000).
Davidson, E. H. Genomic Regulatory Systems (Academic Press, 2001).
Turing, A. M. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond., Ser. B 237, 37–72 (1952).
Wolfram, S. A New Kind of Science (Wolfram Media, 2002).
Barcena Menendez, D., Senthivel, V. R. & Isalan, M. Sender–receiver systems and applying information theory for quantitative synthetic biology. Curr. Opin. Biotechnol. 31, 101–107 (2015).
Karkaria, B. D., Treloar, N. J., Barnes, C. P. & Fedorec, A. J. H. From microbial communities to distributed computing systems. Front. Bioeng. Biotechnol. 8, 834 (2020).
Zhang, Y. et al. A system hierarchy for brain-inspired computing. Nature 586, 378–384 (2020).
Grozinger, L. et al. Pathways to cellular supremacy in biocomputing. Nat. Commun. 10, 5250 (2019).
Tabor, J. J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).
Brophy, J. A. & Voigt, C. A. Principles of genetic circuit design. Nat. Methods 11, 508–520 (2014).
Hasty, J., McMillen, D. & Collins, J. J. Engineered gene circuits. Nature 420, 224–230 (2002).
McAdams, H. H. & Arkin, A. Gene regulation: towards a circuit engineering discipline. Curr. Biol. 10, R318–R320 (2000).
Jones, T. S., Oliveira, S. M. D., Myers, C. J., Voigt, C. A. & Densmore, D. Genetic circuit design automation with Cello 2.0. Nat. Protoc. 17, 1097–1113 (2022).
Nielsen, A. A. et al. Genetic circuit design automation. Science 352, aac7341 (2016).
Lucks, J. B., Qi, L., Whitaker, W. R. & Arkin, A. P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).
Nielsen, A. A., Segall-Shapiro, T. H. & Voigt, C. A. Advances in genetic circuit design: novel biochemistries, deep part mining, and precision gene expression. Curr. Opin. Chem. Biol. 17, 878–892 (2013).
Fernandez-Rodriguez, J., Yang, L., Gorochowski, T. E., Gordon, D. B. & Voigt, C. A. Memory and combinatorial logic based on DNA inversions: dynamics and evolutionary stability. ACS Synth. Biol. 4, 1361–1372 (2015).
Shin, J., Zhang, S., Der, B. S., Nielsen, A. A. & Voigt, C. A. Programming Escherichia coli to function as a digital display. Mol. Syst. Biol. 16, e9401 (2020).
Bragdon, M. D. J. et al. Cooperative assembly confers regulatory specificity and long-term genetic circuit stability. Cell 186, 3810–3825 (2023).
Sleight, S. C., Bartley, B. A., Lieviant, J. A. & Sauro, H. M. Designing and engineering evolutionary robust genetic circuits. J. Biol. Eng. 4, 12 (2010).
Ceroni, F., Algar, R., Stan, G. B. & Ellis, T. Quantifying cellular capacity identifies gene expression designs with reduced burden. Nat. Methods 12, 415–418 (2015).
Huang, H. H. et al. dCas9 regulator to neutralize competition in CRISPRi circuits. Nat. Commun. 12, 1692 (2021).
McBride, C. D., Grunberg, T. W. & Del Vecchio, D. Design of genetic circuits that are robust to resource competition. Curr. Opin. Syst. Biol. https://doi.org/10.1016/j.coisb.2021.100357 (2021).
Scott, M., Gunderson, C. W., Mateescu, E. M., Zhang, Z. & Hwa, T. Interdependence of cell growth and gene expression: origins and consequences. Science 330, 1099–1102 (2010).
Tan, C., Marguet, P. & You, L. Emergent bistability by a growth-modulating positive feedback circuit. Nat. Chem. Biol. 5, 842–848 (2009).
Şimşek, E., Yao, Y., Lee, D. & You, L. Toward predictive engineering of gene circuits. Trends Biotechnol. 41, 760–768 (2023).
Zhang, R. et al. Topology-dependent interference of synthetic gene circuit function by growth feedback. Nat. Chem. Biol. 16, 695–701 (2020).
Zhang, R. et al. Winner-takes-all resource competition redirects cascading cell fate transitions. Nat. Commun. https://doi.org/10.1038/s41467-021-21125-3 (2021).
Barajas, C., Huang, H. H., Gibson, J., Sandoval, L. & Del Vecchio, D. Feedforward growth rate control mitigates gene activation burden. Nat. Commun. 13, 7054 (2022).
Chen, Y. et al. Genetic circuit design automation for yeast. Nat. Microbiol. 5, 1349–1360 (2020).
Guan, Y. et al. Mitigating host burden of genetic circuits by engineering autonegatively regulated parts and improving functional prediction. ACS Synth. Biol. 11, 2361–2371 (2022).
Liu, Q., Schumacher, J., Wan, X., Lou, C. & Wang, B. Orthogonality and burdens of heterologous AND gate gene circuits in E. coli. ACS Synth. Biol. 7, 553–564 (2018).
Park, Y., Espah Borujeni, A., Gorochowski, T. E., Shin, J. & Voigt, C. A. Precision design of stable genetic circuits carried in highly-insulated E. coli genomic landing pads. Mol. Syst. Biol. 16, e9584 (2020).
Barajas, C. & Del Vecchio, D. Synthetic biology by controller design. Curr. Opin. Biotechnol. 78, 102837 (2022).
Grob, A., Di Blasi, R. & Ceroni, F. Experimental tools to reduce the burden of bacterial synthetic biology. Curr. Opin. Syst. Biol. 28, 100393 (2021).
Son, H. I., Weiss, A. & You, L. Design patterns for engineering genetic stability. Curr. Opin. Biomed. Eng. 19, 100297 (2021).
Ceroni, F. et al. Burden-driven feedback control of gene expression. Nat. Methods 15, 387–393 (2018).
Lou, C. et al. Synthesizing a novel genetic sequential logic circuit: a push-on push-off switch. Mol. Syst. Biol. 6, 350 (2010).
Tamsir, A., Tabor, J. J. & Voigt, C. A. Robust multicellular computing using genetically encoded NOR gates and chemical ‘wires’. Nature 469, 212–215 (2011).
Yokobayashi, Y., Weiss, R. & Arnold, F. H. Directed evolution of a genetic circuit. Proc. Natl Acad. Sci. USA 99, 16587–16591 (2002).
Du, P. et al. De novo design of an intercellular signaling toolbox for multi-channel cell−cell communication and biological computation. Nat. Commun. 11, 4226 (2020).
Macia, J. et al. Implementation of complex biological logic circuits using spatially distributed multicellular consortia. PLoS Comput. Biol. 12, e1004685 (2016).
Sexton, J. T. & Tabor, J. J. Multiplexing cell−cell communication. Mol. Syst. Biol. 16, e9618 (2020).
Garg, A., Lohmueller, J. J., Silver, P. A. & Armel, T. Z. Engineering synthetic TAL effectors with orthogonal target sites. Nucleic Acids Res. 40, 7584–7595 (2012).
Green, A. A. et al. Complex cellular logic computation using ribocomputing devices. Nature 548, 117–121 (2017).
Hsia, J., Holtz, W. J., Maharbiz, M. M., Arcak, M. & Keasling, J. D. Modular synthetic inverters from zinc finger proteins and small RNAs. PLoS ONE 11, e0149483 (2016).
Jusiak, B., Cleto, S., Perez-Pinera, P. & Lu, T. K. Engineering synthetic gene circuits in living cells with CRISPR technology. Trends Biotechnol. 34, 535–547 (2016).
Nielsen, A. A. & Voigt, C. A. Multi-input CRISPR/Cas genetic circuits that interface host regulatory networks. Mol. Syst. Biol. 10, 763 (2014).
Stanton, B. C. et al. Genomic mining of prokaryotic repressors for orthogonal logic gates. Nat. Chem. Biol. 10, 99–105 (2014).
Taketani, M. et al. Genetic circuit design automation for the gut resident species Bacteroides thetaiotaomicron. Nat. Biotechnol. 38, 962–969 (2020).
Didovyk, A., Borek, B., Hasty, J. & Tsimring, L. Orthogonal modular gene repression in Escherichia coli using engineered CRISPR/Cas9. ACS Synth. Biol. 5, 81–88 (2016).
Rondon, R. E., Groseclose, T. M., Short, A. E. & Wilson, C. J. Transcriptional programming using engineered systems of transcription factors and genetic architectures. Nat. Commun. 10, 4784 (2019).
Bonnet, J., Yin, P., Ortiz, M. E., Subsoontorn, P. & Endy, D. Amplifying genetic logic gates. Science 340, 599–603 (2013).
Zhang, S. & Voigt, C. A. Engineered dCas9 with reduced toxicity in bacteria: implications for genetic circuit design. Nucleic Acids Res. 46, 11115–11125 (2018).
Basu, S., Mehreja, R., Thiberge, S., Chen, M. T. & Weiss, R. Spatiotemporal control of gene expression with pulse-generating networks. Proc. Natl Acad. Sci. USA 101, 6355–6360 (2004).
Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl Acad. Sci. USA 101, 8414–8419 (2004).
Ackers, G. K., Johnson, A. D. & Shea, M. A. Quantitative model for gene regulation by lambda phage repressor. Proc. Natl Acad. Sci. USA 79, 1129–1133 (1982).
Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).
Kotula, J. W. et al. Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc. Natl Acad. Sci. USA 111, 4838–4843 (2014).
Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).
Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl Acad. Sci. USA 102, 3581–3586 (2005).
Xiong, L. L., Garrett, M. A., Buss, M. T., Kornfield, J. A. & Shapiro, M. G. Tunable temperature-sensitive transcriptional activation based on lambda repressor. ACS Synth. Biol. 11, 2518–2522 (2022).
Karig, D. et al. Stochastic turing patterns in a synthetic bacterial population. Proc. Natl Acad. Sci. USA 115, 6572–6577 (2018).
Liu, C. et al. Sequential establishment of stripe patterns in an expanding cell population. Science 334, 238–241 (2011).
Ptashne, M. A Genetic Switch: Phage Lambda Revisited. 3rd ed. (Cold Spring Harbor Laboratory Press, 2004).
Itzkovitz, S., Tlusty, T. & Alon, U. Coding limits on the number of transcription factors. BMC Genomics 7, 239 (2006).
Payne, S. & You, L. Engineered cell−cell communication and its applications. Adv. Biochem Eng. Biotechnol. 146, 97–121 (2014).
Duncker, K. E., Holmes, Z. A. & You, L. Engineered microbial consortia: strategies and applications. Microb. Cell Fact. 20, 211 (2021).
Kylilis, N., Tuza, Z. A., Stan, G.-B. & Polizzi, K. M. Tools for engineering coordinated system behaviour in synthetic microbial consortia. Nat. Commun. 9, 2677 (2018).
Weber, W., Daoud-El Baba, M. & Fussenegger, M. Synthetic ecosystems based on airborne inter- and intrakingdom communication. Proc. Natl Acad. Sci. USA 104, 10435–10440 (2007).
Bacchus, W. & Fussenegger, M. Engineering of synthetic intercellular communication systems. Metab. Eng. 16, 33–41 (2013).
Canton, B., Labno, A. & Endy, D. Refinement and standardization of synthetic biological parts and devices. Nat. Biotechnol. 26, 787–793 (2008).
Weiss, R. & Knight, T. F. Engineered communications for microbial robotics. In Revised Papers from the 6th International Workshop on DNA-Based Computers: DNA Computing (eds. Condon, A. & Rozenberg, G.) 1−16 (Springer-Verlag, 2001).
Kong, W., Celik, V., Liao, C., Hua, Q. & Lu, T. Programming the group behaviors of bacterial communities with synthetic cellular communication. Bioresour. Bioprocess. 1, 24 (2014).
Meyer, A. J., Segall-Shapiro, T. H., Glassey, E., Zhang, J. & Voigt, C. A. Escherichia coli ‘Marionette’ strains with 12 highly optimized small-molecule sensors. Nat. Chem. Biol. 15, 196–204 (2019).
Vaiana, C. A. et al. Characterizing chemical signaling between engineered ‘microbial sentinels’ in porous microplates. Mol. Syst. Biol. 18, e10785 (2022).
Chen, T., Ali Al-Radhawi, M., Voigt, C. A. & Sontag, E. D. A synthetic distributed genetic multi-bit counter. iScience 24, 103526 (2021).
Al-Radhawi, M. A. et al. Distributed implementation of Boolean functions by transcriptional synthetic circuits. ACS Synth. Biol. 9, 2172–2187 (2020).
Balagaddé, F. K. et al. A synthetic Escherichia coli predator−prey ecosystem. Mol. Syst. Biol. 4, 187 (2008).
Danino, T., Mondragón-Palomino, O., Tsimring, L. & Hasty, J. A synchronized quorum of genetic clocks. Nature 463, 326–330 (2010).
Payne, S. et al. Temporal control of self-organized pattern formation without morphogen gradients in bacteria. Mol. Syst. Biol. 9, 697 (2013).
Alnahhas, R. N. et al. Majority sensing in synthetic microbial consortia. Nat. Commun. 11, 3659 (2020).
Cao, Y. et al. Collective space-sensing coordinates pattern scaling in engineered bacteria. Cell 165, 620–630 (2016).
Ausländer, D. et al. Programmable full-adder computations in communicating three-dimensional cell cultures. Nat. Methods 15, 57–60 (2018).
Regot, S. et al. Distributed biological computation with multicellular engineered networks. Nature 469, 207–211 (2011).
Sarkar, K., Chakraborty, S., Bonnerjee, D. & Bagh, S. Distributed computing with engineered bacteria and its application in solving chemically generated 2 × 2 maze problems. ACS Synth. Biol. 10, 2456–2464 (2021).
Carignano, A. et al. Modular, robust, and extendible multicellular circuit design in yeast. eLife 11, e74540 (2022).
Urrios, A. et al. A synthetic multicellular memory device. ACS Synth. Biol. 5, 862–873 (2016).
Buluç, A., Meyerhenke, H., Safro, I., Sanders, P. & Schulz, C. Recent advances in graph partitioning. Algorithm Engineering (eds Kliemann, L. & Sanders, P.) 117–158 (Springer, 2016).
Hendrickson, B. & Kolda, T. G. Graph partitioning models for parallel computing. Parallel Comput. 26, 1519–1534 (2000).
Augeri, C. J. & Ali, H. H. New graph-based algorithms for partitioning VLSI circuits. In 2004 IEEE International Symposium on Circuits and Systems (ISCAS) Vol. 4, 521−524 (IEEE, 2004).
Chen, Y. P., Wang, T. C. & Wong, D. F. A graph partitioning problem for multi-chip design. In 1993 IEEE International Symposium on Circuits and Systems (ISCAS) 1778−1781 (IEEE, 1993).
Perl, Y. & Snir, M. Circuit partitioning with size and connection constraints. Networks 13, 365–375 (1983).
Diestel, R. Graph Theory 5th edn (Springer-Verlag, 2017).
Matula, D. W. & Beck, L. L. Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30, 417–427 (1983).
Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).
Lou, C., Stanton, B., Chen, Y. J., Munsky, B. & Voigt, C. A. Ribozyme-based insulator parts buffer synthetic circuits from genetic context. Nat. Biotechnol. 30, 1137–1142 (2012).
Chen, Y.-J. et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659–664 (2013).
Shao, B. et al. Single-cell measurement of plasmid copy number and promoter activity. Nat. Commun. 12, 1475 (2021).
Macia, J. & Sole, R. How to make a synthetic multicellular computer. PLoS ONE 9, e81248 (2014).
Ausländer, S., Ausländer, D., Lang, P. F., Kemi, M. & Fussenegger, M. Design of multipartite transcription factors for multiplexed logic genome integration control in mammalian cells. ACS Synth. Biol. 9, 2964–2970 (2020).
Groseclose, T. M., Rondon, R. E., Herde, Z. D., Aldrete, C. A. & Wilson, C. J. Engineered systems of inducible anti-repressors for the next generation of biological programming. Nat. Commun. 11, 4440 (2020).
Groseclose, T. M. et al. Biomolecular systems engineering: unlocking the potential of engineered allostery via the lactose repressor topology. Annu. Rev. Biophys. 50, 303–321 (2021).
Daniel, R., Rubens, J. R., Sarpeshkar, R. & Lu, T. K. Synthetic analog computation in living cells. Nature 497, 619–623 (2013).
DeWeerdt, S. How to map the brain. Nature 571, S6–S8 (2019).
Prindle, A. et al. A sensing array of radically coupled genetic ‘biopixels’. Nature 481, 39–44 (2011).
Ben Said, S., Tecon, R., Borer, B. & Or, D. The engineering of spatially linked microbial consortia—potential and perspectives. Curr. Opin. Biotechnol. 62, 137–145 (2020).
Osmekhina, E. et al. Controlled communication between physically separated bacterial populations in a microfluidic device. Commun. Biol. 1, 97 (2018).
Sardanyés, J., Bonforti, A., Conde, N., Solé, R. & Macia, J. Computational implementation of a tunable multicellular memory circuit for engineered eukaryotic consortia. Front. Physiol. 6, 281 (2015).
Toda, S., Blauch, L. R., Tang, S. K. Y., Morsut, L. & Lim, W. A. Programming self-organizing multicellular structures with synthetic cell−cell signaling. Science 361, 156–162 (2018).
Shirriff, K. Mining Bitcoin with pencil and paper: 0.67 hashes per day. http://www.righto.com/2014/09/mining-bitcoin-with-pencil-and-paper.htmlKen Shirriff's Blog (2014).
Goñi-Moreno, A. & Amos, M. DiSCUS: a simulation platform for conjugation computing. In Unconventional Computation and Natural Computation (eds. Calude, C. S. & Dinneen, M. J.) 181−191 (Springer International Publishing, 2015).
Gutiérrez, M. et al. A new improved and extended version of the multicell bacterial simulator gro. ACS Synth. Biol. 6, 1496–1508 (2017).
Gorochowski, T. E. Agent-based modelling in synthetic biology. Essays Biochem. 60, 325–336 (2016).
Naylor, J. et al. Simbiotics: a multiscale integrative platform for 3D modeling of bacterial populations. ACS Synth. Biol. 6, 1194–1210 (2017).
Rivest, R. The MD5 message-digest algorithm. RFC 10.17487/RFC1321 (1992).
Wolf, C. Design and Implementation of the Yosys Open SYnthesis Suite https://yosyshq.net/yosys/files/yosys_manual.pdf (2013).
Paysan-Lafosse, T. et al. InterPro in 2022. Nucleic Acids Res. 51, D418–D427 (2022).
Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res. 43, W389–W394 (2015).
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).
Voight, C & Sun, J. Subcircuit genome files. Zenodo https://doi.org/10.5281/zenodo.13247698 (2004).
Acknowledgements
We thank J. Roberts (Boston University) and S. Oliveira (North Carolina A&T State University) for their help in developing Cello 2.1. This work was supported by funding from the National Science Foundation SemiSynBio program awards CCF-1807575 (J.P., J.S., C.A.V.) and CCF-1849588 (W.C., E.D.S., C.A.V.); DARPA Synergistic Discovery and Design program (SD2) award FA8750-17-C-0229 (J.P., J.S., C.A.V.); an award from the Schmidt Innovation Fellows Program (J.P., J.S., C.A.V.); Air Force Office of Scientific Research award FA9550-22-1-0316 (W.C., E.D.S); National Science Foundation award 2211040 (Y.Z., D.D.) and National Science Foundation’s Semiconductor Synthetic Biology for Information Storage and Retrieval award 2027045 (C.K., W.Z.H.).
Author information
Authors and Affiliations
Contributions
J.P., J.S. and C.A.V. conceived the study and designed the experiments. J.P. and J.S. performed the experiments and analyzed the data. W.C., Y.Z., D.D. and E.S. implemented the partitioning and edge coloring algorithm. C.K., W.Z.H. and D.D. developed Cello 2.1. J.P., J.S. and C.A.V. wrote the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Chemical Biology thanks Irene Otero-Muras, Xiao-Jun Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1−16, Gate Datasheets, Subcircuit Datasheets, Tables 1−11, Methods and Software.
Supplementary Data
Source data for supplementary figures.
Source data
Source Data Fig. 1
Data for Fig. 1d.
Source Data Fig. 2
Data for Fig. 2c−e,g.
Source Data Fig. 3
Data for Fig. 3d,e.
Source Data Fig. 4
Data for Fig. 4b.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Padmakumar, J.P., Sun, J.J., Cho, W. et al. Partitioning of a 2-bit hash function across 66 communicating cells. Nat Chem Biol 21, 268–279 (2025). https://doi.org/10.1038/s41589-024-01730-1
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/s41589-024-01730-1
This article is cited by
-
Engineering intercellular communication using M13 phagemid and CRISPR-based gene regulation for multicellular computing in Escherichia coli
Nature Communications (2025)
-
Hashing the message with cells
Nature Chemical Biology (2025)