Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Peptide surfactants with post-translational C-methylations that promote bacterial development

Abstract

Bacteria produce a variety of peptides to mediate nutrient acquisition, microbial interactions and other physiological processes. Of special interest are surface-active peptides that aid in growth and development. Herein we report the structure and characterization of clavusporins, unusual and hydrophobic ribosomal peptides with multiple C-methylations at unactivated carbon centers, which help drastically reduce the surface tension of water and thereby aid in Streptomyces development. The peptides are synthesized by a previously uncharacterized protein superfamily, termed DUF5825, in conjunction with a vitamin B12-dependent radical S-adenosylmethionine metalloenzyme. The operon encoding clavusporins is widespread among actinomycete bacteria, suggesting a prevalent role for clavusporins as morphogens in erecting aerial hyphae and thereby advancing sporulation and proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Discovery and structure of clavusporins.
Fig. 2: Clavusporins reduce surface tension and promote aerial hyphae growth.
Fig. 3: Biosynthesis of clavusporins.
Fig. 4: The mpc-type BGCs are widespread in actinomycetes.

Similar content being viewed by others

Data availability

Experimental data supporting the conclusions of this study are available within the article and Supplementary Information. Protein sequences were retrieved from the NCBI Nonredundant Protein Database (http://www.ncbi.nlm.nih.gov/protein/) and NCBI accession numbers of proteins in the S. clavuligerus and S. ghanaensis BGCs are as follows: WP_003958126.1(MpcT), WP_003958125.1 (MpcP), WP_003958123.1 (MpcB), WP_003958122.1 (MpcC), WP_004993370.1 (MpgT), WP_004993372.1 (MpgP), WP_004993375.1 (MpgB), WP_004993376.1 (MpgC). Raw NMR data used to elucidate natural product structures as well as the other data in this paper are available from the corresponding author upon request. Source data are provided with this paper.

References

  1. Clardy, J. & Walsh, C. Lessons from natural molecules. Nature 432, 829–837 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Salvador-Reyes, L. A. & Luesch, H. Biological targets and mechanisms of action of natural products from marine cyanobacteria. Nat. Prod. Rep. 32, 478–503 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wang, R. & Seyedsayamdost, M. R. Hijacking exogenous signals to generate new secondary metabolites during symbiotic interactions. Nat. Rev. Chem. 1, 0021 (2017).

    Article  Google Scholar 

  4. Van der Meij, A., Worsley, S. F., Hutchings, M. I. & van Wezel, G. P. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol. Rev. 41, 392–416 (2017).

    Article  PubMed  Google Scholar 

  5. Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Hider, R. C. & Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep. 27, 637–657 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Khan, S. H., Ahmad, N., Ahmad, F. & Kumar, R. Naturally occurring organic osmolytes: from cell physiology to disease prevention. IUBMB Life 62, 891–895 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Ron, E. Z. & Rosenberg, E. Natural roles of biosurfactants. Environ. Microbiol. 3, 229–236 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Straight, P. D., Willey, J. M. & Kolter, R. Interactions between Streptomyces coelicolor and Bacillus subtilis: role of surfactants in raising aerial structures. J. Bacteriol. 188, 4918–4925 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bibb, M. J. Regulation of secondary metabolism in streptomycetes. Curr. Opin. Microbiol. 8, 208–215 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Flärdh, K. & Buttner, M. J. Streptomyces morphogenetics: dissecting differentiation in a filamentous bacterium. Nat. Rev. Microbiol. 7, 36–49 (2009).

    Article  PubMed  Google Scholar 

  12. Chater, K. F. Recent advances in understanding Streptomyces. F1000Res. 5, 2795 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. McCormick, J. R. & Flärdh, K. Signals and regulators that govern Streptomyces development. FEMS Microbiol. Rev. 36, 206–231 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Tillotson, R. D., Wösten, H. A., Richter, M. & Willey, J. M. A surface active protein involved in aerial hyphae formation in the filamentous fungus Schizophillum commune restores the capacity of a bald mutant of the filamentous bacterium Streptomyces coelicolor to erect aerial structures. Mol. Microbiol. 30, 595–602 (1998).

    Article  CAS  PubMed  Google Scholar 

  15. Wösten, H. A. B. & Willey, J. M. Surface-active proteins enable microbial aerial hyphae to grow into the air. Microbiology 146, 767–773 (2000).

    Article  PubMed  Google Scholar 

  16. Gavriilidou, A. et al. Compendium of specialized metabolite biosynthetic diversity encoded in bacterial genomes. Nat. Microbiol. 7, 726–735 (2022).

    Article  CAS  PubMed  Google Scholar 

  17. Kodani, S. et al. The SapB morphogen is a lantibiotic-like peptide derived from the product of the developmental gene ramS in Streptomyces coelicolor. Proc. Natl Acad. Sci. USA 101, 11448–11453 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Willey, J., Santamaria, R., Guijarro, J., Geistlich, M. & Losick, R. Extracellular complementation of a developmental mutation implicates a small sporulation protein in aerial mycelium formation by S. coelicolor. Cell 65, 641–650 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Montalbán-López, M. et al. New developments in RiPP discovery, enzymology and engineering. Nat. Prod. Rep. 38, 130–239 (2021).

    Article  PubMed  Google Scholar 

  20. Álvarez-Álvarez, R. et al. A 1.8-Mb-reduced Streptomyces clavuligerus genome: relevance for secondary metabolism and differentiation. Appl. Microbiol. Biotechnol. 98, 2183–2195 (2014).

    Article  PubMed  Google Scholar 

  21. Söding, J., Biegert, A. & Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 33, W244–W248 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Frey, P. A., Hegeman, A. D. & Ruzicka, F. J. The radical SAM superfamily. Crit. Rev. Biochem. Mol. Biol. 43, 63–88 (2008).

    Article  CAS  PubMed  Google Scholar 

  24. Landgraf, B. J., McCarthy, E. L. & Booker, S. J. Radical S-adenosylmethionine enzymes in human health and disease. Annu. Rev. Biochem. 85, 485–514 (2016).

    Article  CAS  PubMed  Google Scholar 

  25. Zhang, Q., van der Donk, W. A. & Liu, W. Radical-mediated enzymatic methylation: a tale of two SAMS. Acc. Chem. Res. 45, 555–564 (2012).

    Article  PubMed  Google Scholar 

  26. Bauerle, M. R., Schwalm, E. L. & Booker, S. J. Mechanistic diversity of radical S-adenosylmethionine (SAM)-dependent methylation. J. Biol. Chem. 290, 3995–4002 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, S. et al. Mechanistic insights into class B radical-S-adenosylmethionine methylases: ubiquitous tailoring enzymes in natural product biosynthesis. Curr. Opin. Chem. Biol. 35, 73–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Huo, L. et al. Synthetic biotechnology to study and engineer ribosomal bottromycin biosynthesis. Chem. Biol. 19, 1278–1287 (2012).

    Article  CAS  PubMed  Google Scholar 

  29. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    Article  CAS  PubMed  Google Scholar 

  30. Crone, W. J. K. et al. Dissecting bottromycin biosynthesis using comparative untargeted metabolomics. Angew. Chem. Int. Ed. Engl. 55, 9639–9643 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Freeman, M. F. et al. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat. Chem. 9, 387–395 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Noike, M. et al. A peptide ligase and the ribosome cooperate to synthesize the peptide pheganomycin. Nat. Chem. Biol. 11, 71–76 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Parent, A. et al. The B12-radical SAM enzyme PoyC catalyzes valine Cβ-methylation during polytheonamide biosynthesis. J. Am. Chem. Soc. 138, 15515–15518 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schmitt-John, T. & Engels, J. W. Promoter constructions for efficient secretion expression in Streptomyces lividans. Appl. Microbiol. Biotechnol. 36, 493–498 (1992).

    Article  CAS  PubMed  Google Scholar 

  35. Guijarro, J., Santamaria, R., Schauer, A. & Losick, R. Promoter determining the timing and spatial localization of transcription of a cloned Streptomyces coelicolor gene encoding a spore-associated polypeptide. J. Bacteriol. 170, 1895–1901 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hamada, T. et al. Solution structure of polytheonamide B, a highly cytotoxic nonribosomal polypeptide from marine sponge. J. Am. Chem. Soc. 132, 12941–12945 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. Woolfrey, S. G., Banzon, G. M. & Groves, M. J. The effect of sodium chloride on the dynamic surface tension of sodium dodecyl sulfate solutions. J. Colloid Interface Sci. 112, 583–587 (1986).

    Article  CAS  Google Scholar 

  38. Higgens, C. E. & Kastner, R. E. Streptomyces clavuligerus sp. nov., a β-lactam antibiotic producer. Int. J. Syst. Bacteriol. 21, 326–331 (1971).

    Article  Google Scholar 

  39. Sinner, E. K., Marous, D. R. & Townsend, C. A. Evolution of methods for the study of cobalamin-dependent radical SAM enzymes. ACS Bio. Med. Chem. Au 2, 4–10 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Lanz, N. D. et al. Enhanced solubilization of class b radical S-adenosylmethionine methylases by improved cobalamin uptake in Escherichia coli. Biochemistry 57, 1475–1490 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Blaszczyk, A. J., Wang, R. X. & Booker, S. J. TsrM as a model for purifying and characterizing cobalamin-dependent radical S-adenosylmethionine methylases. Methods Enzymol. 595, 303–329 (2017).

  42. Tietz, J. I. et al. A new genome-mining tool redefines the lasso peptide biosynthetic landscape. Nat. Chem. Biol. 13, 470–478 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerlt, J. A. Genomic enzymology: web tools for leveraging protein family sequence-function space and genome context to discover novel functions. Biochemistry 56, 4293–4308 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Blin, K. et al. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation. Nucleic Acids Res. 51, W46–W50 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Burkhart, B. J., Hudson, G. A., Dunbar, K. L. & Mitchell, D. A. A prevalent peptide-binding domain guides ribosomal natural product biosynthesis. Nat. Chem. Biol. 11, 564–570 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bhushan, A., Egli, P. J., Peters, E. E., Freeman, M. F. & Piel, J. Genome mining- and synthetic biology-enabled production of hypermodified peptides. Nat. Chem. 11, 931–939 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Paoli, L. et al. Biosynthetic potential of the global ocean microbiome. Nature 607, 111–118 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang, S. et al. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat. Prod. Rep. 40, 557–594 (2023).

    Article  CAS  PubMed  Google Scholar 

  49. Ishikawa, J. & Hotta, K. FramePlot: a new implementation of the Frame analysis for predicting protein-coding regions in bacterial DNA with a high G + C content. FEMS Microbiol. Lett. 174, 251–253 (1999).

    Article  CAS  PubMed  Google Scholar 

  50. Frith, M. C., Saunders, N. F. W., Kobe, B. & Bailey, T. Discovering sequence motifs with arbitrary insertions and deletions. PLoS Comput. Biol. 4, e1000071 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Seyedsayamdost Lab members for helpful discussions, J. Schreiber (Princeton University) for assistance in SEM experiments, D. Potapenko (Princeton University) for guidance in surface tension measurement and I. Pelczer (Princeton University) for collecting NMR data. We thank the National Institutes of Health (R01 GM140034 and R35 GM152049 to M.R.S.) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. and M.R.S. conceived of the project. C.Z. designed and performed all experiments and analyzed data if not otherwise stated. Y.L. generated mpc cluster knockout and performed qPCR analysis. E.N.O. and C.Z. conducted chemical complementation experiments. C.Z. and M.R.S. wrote the paper with contributions from all authors.

Corresponding author

Correspondence to Mohammad R. Seyedsayamdost.

Ethics declarations

Competing interests

M.R.S. is cofounder of Cryptyx Bioscience and a consultant to Merck Co. These entities played no role in the current study. The other authors declare no competing interests.

Peer review

Peer review information

Nature Chemical Biology thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Structural elucidation of clavusporins.

a,b, UPLC-coupled HRMS analysis of extracts of WT S. clavuligerus and the deletion mutants indicated. Shown are extracted ion chromatograms of clavusporin A (a) and clavusporin B (b). The traces are offset on the y axis for clarity. Each experiment was repeated with at least three biological replicates, and representative results are shown. c, Key NMR correlations used for determination of post-translational methylations in clavusporin B. d, Key NMR correlations used for determination of the overall structure of clavusporin B.

Source data

Extended Data Fig. 2 Phenotypic differences of WT S. clavuligerus and mpc mutants.

ac, Images of WT S. clavuligerus (a), ΔmpcB (b) and ΔmpcC (c) growing on GYM agar for 10 days. Note the green spores produced by the WT. df, SEM images of WT (d), ΔmpcB (e) and ΔmpcC (f), which confirm sporulation in WT, and minimal aerial hyphae growth in mutants. Each experiment was repeated in three biological replicates, and representative results are shown.

Source data

Extended Data Fig. 3 Phenotypic differences between WT S. ghanaensis and the mpgB mutant.

a, The orthologous mpg gene cluster in S. ghanaensis. The gene locus of mpgA is marked by a black circle, and its protein sequence is shown. b,c, Images of WT S. ghanaensis (b) and ΔmpgB S. ghanaensis (c) growing on SFM agar for 3 days. Note the robust production of dark gray spores by the WT. d,e, SEM images of WT (d) and ΔmpgB S. ghanaensis (e), which show typical formation of Streptomyces spore chains in WT. Each experiment was repeated in three biological replicates, and representative results are shown.

Source data

Extended Data Fig. 4 MpcP is a site-specific leader peptidase.

a, HPLC–HRMS analysis of the MpcP reaction with NusA-MpcA. Heat-inactivated MpcP and a no-enzyme reaction were used as controls. Shown are extracted ion chromatograms of MpcA1-21. b, HPLC–HRMS analysis of trypsin-digested NusA-MpcA as a positive control of MpcP assay. Shown are extracted ion chromatograms of two tryptic fragments of MpcA, MpcA1–13 (blue) and MpcA(−15)–(1) (red). c, HPLC–HRMS analysis of MpcP-treated MBP-MpcA fusion, which was coexpressed with MpcBC in E. coli. Shown are extracted ion chromatograms of MpcA1–21 with different methylation states. The traces are offset on the y axis for clarity. Each experiment was repeated in three biological replicates, and representative results are shown.

Source data

Supplementary information

Supplementary Information

Supplementary Note, Tables 1–10 and Figs. 1–11.

Reporting Summary

Source data

Source Data Fig. 1

Unprocessed MS signal file.

Source Data Fig. 2

Raw surface tension data and uncropped images.

Source Data Fig. 3

Raw extracted ion chromatogram data.

Source Data Fig. 4

Precursor peptide sequences and uncropped logo plots.

Source Data Extended Data Fig. 1

Raw extracted ion chromatogram data.

Source Data Extended Data Fig. 2

Uncropped images.

Source Data Extended Data Fig. 3

Uncropped images.

Source Data Extended Data Fig. 4

Raw extracted ion chromatogram data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Li, Y., Overton, E.N. et al. Peptide surfactants with post-translational C-methylations that promote bacterial development. Nat Chem Biol 21, 1069–1075 (2025). https://doi.org/10.1038/s41589-025-01882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41589-025-01882-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing