The year 2022 will be remembered as the turning point for accurate long-read sequencing, which now establishes the gold standard for speed and accuracy at competitive costs. We discuss the key bioinformatics techniques needed to power long reads across application areas and close with our vision for long-read sequencing over the coming years.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A spatial long-read approach at near-single-cell resolution reveals developmental regulation of splicing and polyadenylation sites in distinct cortical layers and cell types
Nature Communications Open Access 29 August 2025
-
Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment
Nature Methods Open Access 28 March 2025
-
A single NLR gene confers resistance to leaf and stripe rust in wheat
Nature Communications Open Access 15 November 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


References
Nurk, S. et al. Science 376, 44–53 (2022).
Aganezov, S. et al. Science 376, eabl3533 (2022).
Gorzynski, J. E. et al. N. Engl. J. Med. 386, 700–702 (2022).
Hufford, M. B. et al. Science 373, 655–662 (2021).
Glinos, D. A. et al. Nature 608, 353–359 (2022).
Naish, M. et al. Science 374, eabi7489 (2021).
Gershman, A. et al. Science 376, eabj5089 (2022).
Goodwin, S., McPherson, J. D. & McCombie, W. R. Nat. Rev. Genet. 17, 333–351 (2016).
Wenger, A. M. et al. Nat. Biotechnol. 37, 1155–1162 (2019).
Silvestre-Ryan, J. & Holmes, I. Genome Biol. 22, 38 (2021).
Ekim, B., Berger, B. & Chikhi, R. Cell Syst. 12, 958–968.e6 (2021).
Baid, G. et al. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-01435-7 (2022).
Furlan, M. et al. RNA Biol. 18 (Suppl. 1), 31–40 (2021).
Kovaka, S., Fan, Y., Ni, B., Timp, W. & Schatz, M. C. Nat. Biotechnol. 39, 431–441 (2021).
Payne, A. et al. Nat. Biotechnol. 39, 442–450 (2021).
Gamaarachchi, H. et al. Nat. Biotechnol. 40, 1026–1029 (2022).
Watson, M. & Warr, A. Nat. Biotechnol. 37, 124–126 (2019).
Rautiainen, M. et al. Preprint at bioRxiv https://doi.org/10.1101/2022.06.24.497523 (2022).
Ou, S. et al. Preprint at bioRxiv https://doi.org/10.1101/2022.10.09.511471 (2022).
Vollger, M. R., Kerpedjiev, P., Phillippy, A. M. & Eichler, E. E. Bioinformatics https://doi.org/10.1093/bioinformatics/btac018 (2022).
Sedlazeck, F. J. et al. Nat. Methods 15, 461–468 (2018).
Audano, P. A. et al. Cell 176, 663–675.e19 (2019).
Alonge, M. et al. Cell 182, 145–161.e23 (2020).
Sone, J. et al. Nat. Genet. 51, 1215–1221 (2019).
Della Coletta, R., Qiu, Y., Ou, S., Hufford, M. B. & Hirsch, C. N. Genome Biol. 22, 3 (2021).
Li, H. Bioinformatics 34, 3094–3100 (2018).
Marco-Sola, S., Moure, J. C., Moreto, M. & Espinosa, A. Bioinformatics 37, 456–463 (2021).
Kirsche, M. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.05.27.445886 (2021).
Wyman, D. & Mortazavi, A. Bioinformatics 35, 340–342 (2019).
Kovaka, S. et al. Genome Biol. 20, 278 (2019).
Chen, Y. et al. Preprint at bioRxiv https://doi.org/10.1101/2021.04.21.440736 (2021).
Drexler, H. L. et al. Nat. Protoc. 16, 1343–1375 (2021).
Lebrigand, K., Magnone, V., Barbry, P. & Waldmann, R. Nat. Commun. 11, 4025 (2020).
Acknowledgements
We would like to thank all past and current members of the Schatz lab, as well as our long-read collaborators, especially Timour Baslan, Andrew Carroll, Jason Chin, Megan Dennis, Evan Eichler, Tom Gingeras, Mark Gerstein, Sara Goodwin, Ian Henderson, Candice Hirsch, Matthew Hufford, Alison Klein, Ben Langmead, Zach Lippman, Erich Jarvis, W. Richard McCombie, Rajiv McCoy, Karen Miga, Rachel O’Neill, Mihaela Pertea, Adam Phillippy, Fritz Sedlazeck, Steven Salzberg, Winston Timp, Eli Van Allen, Justin Zook, and many others. Finally, we would also like to thank the researchers at PacBio and Oxford Nanopore for their developments and collaborations. This work was supported in part by the US National Science Foundation (IOS-2216612, IOS-1758800), the US National Institutes of Health (U24HG010263, U41HG006620, U01CA253481), and the Human Frontier Science Program (RGP0025/2021).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Rights and permissions
About this article
Cite this article
Kovaka, S., Ou, S., Jenike, K.M. et al. Approaching complete genomes, transcriptomes and epi-omes with accurate long-read sequencing. Nat Methods 20, 12–16 (2023). https://doi.org/10.1038/s41592-022-01716-8
Published:
Issue date:
DOI: https://doi.org/10.1038/s41592-022-01716-8
This article is cited by
-
A spatial long-read approach at near-single-cell resolution reveals developmental regulation of splicing and polyadenylation sites in distinct cortical layers and cell types
Nature Communications (2025)
-
Uncalled4 improves nanopore DNA and RNA modification detection via fast and accurate signal alignment
Nature Methods (2025)
-
How genomics can help unravel the evolution of endophytic fungi
World Journal of Microbiology and Biotechnology (2025)
-
ClusTrast: a short read de novo transcript isoform assembler guided by clustered contigs
BMC Bioinformatics (2024)
-
Enhancing RNA-seq bias mitigation with the Gaussian self-benchmarking framework: towards unbiased sequencing data
BMC Genomics (2024)