Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A temperature-inducible protein module for control of mammalian cell fate

Abstract

Inducible protein switches are currently limited for use in tissues and organisms because common inducers cannot be controlled with precision in space and time in optically dense settings. Here, we introduce a protein that can be reversibly toggled with a small change in temperature, a stimulus that is both penetrant and dynamic. This protein, called Melt (Membrane localization using temperature) oligomerizes and translocates to the plasma membrane when temperature is lowered. We generated a library of Melt variants with switching temperatures ranging from 30 °C to 40 °C, including two that operate at and above 37 °C. Melt was a highly modular actuator of cell function, permitting thermal control over diverse processes including signaling, proteolysis, nuclear shuttling, cytoskeletal rearrangements and cell death. Finally, Melt permitted thermal control of cell death in a mouse model of human cancer. Melt represents a versatile thermogenetic module for straightforward, non-invasive and spatiotemporally defined control of mammalian cells with broad potential for biotechnology and biomedicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Harnessing BcLOV4 thermosensitivity to generate a purely temperature-inducible protein.
Fig. 2: Characterization of Melt membrane association.
Fig. 3: Thermal control over diverse intracellular processes using Melt.
Fig. 4: Tuning of Melt membrane binding and thermal switch point enables application of Melt-based tools in mammalian temperature ranges.
Fig. 5: Thermal regulation of cell fate using Melt.
Fig. 6: Thermal control of Melt and cell fate in animal models.

Similar content being viewed by others

Data availability

All unique biological materials and raw images are available upon request. Source data are provided with this paper.

Code availability

Custom scripts used to analyze data are available upon request.

References

  1. Ntziachristos, V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010).

    PubMed  CAS  Google Scholar 

  2. Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light–tissue interaction using computational methods. Lasers Med. Sci. 32, 1909–1918 (2017).

    PubMed  PubMed Central  Google Scholar 

  3. Piraner, D. I. et al. Going deeper: biomolecular tools for acoustic and magnetic imaging and control of cellular function. Biochemistry 56, 5202–5209 (2017).

    PubMed  CAS  Google Scholar 

  4. Miller, I. C. et al. Enhanced intratumoural activity of CAR T cells engineered to produce immunomodulators under photothermal control. Nat. Biomed. Eng. 5, 1348–1359 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Ermakova, Y. G. et al. Thermogenetic control of Ca2+ levels in cells and tissues. Preprint at bioRxiv https://doi.org/10.1101/2023.03.22.533774 (2023).

  6. Corbett, D. C. et al. Thermofluidic heat exchangers for actuation of transcription in artificial tissues. Sci. Adv. 6, eabb9062 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Walton, M., Roestenburg, M., Hallwright, S. & Sutherland, J. C. Effects of ice packs on tissue temperatures at various depths before and after quadriceps hematoma: studies using sheep. J. Orthop. Sports Phys. Ther. 8, 294–300 (1986).

    PubMed  CAS  Google Scholar 

  8. ter Haar, G. & Coussios, C. High intensity focused ultrasound: physical principles and devices. Int. J. Hyperthermia 23, 89–104 (2007).

    Google Scholar 

  9. Horowitz, N. H. Biochemical genetics of Neurospora. Adv. Genet. 3, 33–71 (1950).

    PubMed  CAS  Google Scholar 

  10. Talavera, A. & Basilico, C. Temperature sensitive mutants of BHK cells affected in cell cycle progression. J. Cell. Physiol. 92, 425–436 (1977).

    PubMed  CAS  Google Scholar 

  11. Varadarajan, R., Nagarajaram, H. A. & Ramakrishnan, C. A procedure for the prediction of temperature-sensitive mutants of a globular protein based solely on the amino acid sequence. Proc. Natl Acad. Sci. USA 93, 13908–13913 (1996).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Hurme, R., Berndt, K. D., Normark, S. J. & Rhen, M. A proteinaceous gene regulatory thermometer in Salmonella. Cell 90, 55–64 (1997).

    PubMed  CAS  Google Scholar 

  13. Piraner, D. I., Wu, Y. & Shapiro, M. G. Modular thermal control of protein dimerization. ACS Synth. Biol. 8, 2256–2262 (2019).

    PubMed  CAS  Google Scholar 

  14. Guo, Y., Liu, S., Jing, D., Liu, N. & Luo, X. The construction of elastin-like polypeptides and their applications in drug delivery system and tissue repair. J. Nanobiotechnology 21, 418 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  15. Despanie, J., Dhandhukia, J. P., Hamm-Alvarez, S. F. & MacKay, J. A. Elastin-like polypeptides: therapeutic applications for an emerging class of nanomedicines. J. Control. Release 240, 93–108 (2016).

    PubMed  CAS  Google Scholar 

  16. Li, Z., Tyrpak, D. R., Park, M., Okamoto, C. T. & MacKay, J. A. A new temperature-dependent strategy to modulate the epidermal growth factor receptor. Biomaterials 183, 319–330 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Abedi, M. H., Lee, J., Piraner, D. I. & Shapiro, M. G. Thermal control of engineered T-cells. ACS Synth. Biol. 9, 1941–1950 (2020).

    PubMed  CAS  Google Scholar 

  18. Wu, Y. et al. Control of the activity of CAR-T cells within tumours via focused ultrasound. Nat. Biomed. Eng. 5, 1336–1347 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Morimoto, R. I. Cells in stress: transcriptional activation of heat shock genes. Science 259, 1409–1410 (1993).

    PubMed  CAS  Google Scholar 

  20. Feder, M. E. & Hofmann, G. E. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61, 243–282 (1999).

    PubMed  CAS  Google Scholar 

  21. Akerfelt, M., Morimoto, R. I. & Sistonen, L. Heat shock factors: integrators of cell stress, development and lifespan. Nat. Rev. Mol. Cell Biol. 11, 545–555 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  22. Benman, W. et al. Temperature-responsive optogenetic probes of cell signaling. Nat. Chem. Biol. 18, 152–160 (2022).

    PubMed  CAS  Google Scholar 

  23. Glantz, S. T. et al. Directly light-regulated binding of RGS-LOV photoreceptors to anionic membrane phospholipids. Proc. Natl Acad. Sci. USA 115, E7720–E7727 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Benman, W., Iyengar, P., Mumford, T., Huang, Z. & Bugaj, L. J. Multiplexed dynamic control of temperature to probe and observe mammalian cells. Preprint at bioRxiv https://doi.org/10.1101/2024.02.18.580877 (2024)

  25. Pal, A. A. et al. Optogenetic clustering and membrane translocation of the BcLOV4 photoreceptor. Proc. Natl Acad. Sci. USA 120, e2221615120 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Harper, S. M., Neil, L. C. & Gardner, K. H. Structural basis of a phototropin light switch. Science 301, 1541–1544 (2003).

    PubMed  CAS  Google Scholar 

  27. Huang, Z., Benman, W., Dong, L. & Bugaj, L. Rapid optogenetic clustering in the cytoplasm with BcLOVclust. J. Mol. Biol. 436, 168452 (2024).

    PubMed Central  CAS  Google Scholar 

  28. Mumford, T. R. et al. Simple visualization of submicroscopic protein clusters with a phase-separation-based fluorescent reporter. Cell Syst. 15, 166–179 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Grecco, H. E., Schmick, M. & Bastiaens, P. I. H. Signaling from the living plasma membrane. Cell 144, 897–909 (2011).

    PubMed  CAS  Google Scholar 

  30. Toettcher, J. E., Weiner, O. D. & Lim, W. A. Using optogenetics to interrogate the dynamic control of signal transmission by the Ras/Erk module. Cell 155, 1422–1434 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Citri, A. & Yarden, Y. EGF-ERBB signalling: towards the systems level. Nat. Rev. Mol. Cell Biol. 7, 505–516 (2006).

    PubMed  CAS  Google Scholar 

  32. Liang, S. I. et al. Phosphorylated EGFR dimers are not sufficient to activate Ras. Cell Rep. 22, 2593–2600 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Chung, H. K. et al. A compact synthetic pathway rewires cancer signaling to therapeutic effector release. Science 364, eaat6982 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  34. Gao, X. J., Chong, L. S., Kim, M. S. & Elowitz, M. B. Programmable protein circuits in living cells. Science 361, 1252–1258 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. Sanchez, M. I. & Ting, A. Y. Directed evolution improves the catalytic efficiency of TEV protease. Nat. Methods 17, 167–174 (2020).

    PubMed  CAS  Google Scholar 

  36. Zhang, Q. et al. Designing a green fluorogenic protease reporter by flipping a beta strand of GFP for imaging apoptosis in animals. J. Am. Chem. Soc. 141, 4526–4530 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  37. Collas, P. & Aleström, P. Nuclear localization signal of SV40 T antigen directs import of plasmid DNA into sea urchin male pronuclei in vitro. Mol. Reprod. Dev. 45, 431–438 (1996).

    PubMed  CAS  Google Scholar 

  38. Dorfman, J. & Macara, I. G. STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. Mol. Biol. Cell 19, 1614–1626 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Heo, W. D. et al. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314, 1458–1461 (2006).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. He, L. et al. Optical control of membrane tethering and interorganellar communication at nanoscales. Chem. Sci. 8, 5275–5281 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  41. Regot, S., Hughey, J. J., Bajar, B. T., Carrasco, S. & Covert, M. W. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157, 1724–1734 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  42. Levskaya, A., Weiner, O. D., Lim, W. A. & Voigt, C. A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  43. Berlew, E. E. et al. Designing single-component optogenetic membrane recruitment systems: the Rho-family GTPase signaling toolbox. ACS Synth. Biol. 11, 515–521 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Hannanta-Anan, P., Glantz, S. T. & Chow, B. Y. Optically inducible membrane recruitment and signaling systems. Curr. Opin. Struct. Biol. 57, 84–92 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Nobes, C. D. & Hall, A. Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81, 53–62 (1995).

    PubMed  CAS  Google Scholar 

  46. Shkarina, K. et al. Optogenetic activators of apoptosis, necroptosis, and pyroptosis. J. Cell Biol. 221, 202109038 (2022).

    Google Scholar 

  47. Ntombela, L., Adeleye, B. & Chetty, N. Low-cost fabrication of optical tissue phantoms for use in biomedical imaging. Heliyon 6, e03602 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. Gallouzi, I. E. et al. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc. Natl Acad. Sci. USA 97, 3073–3078 (2000).

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Kedersha, N. L., Gupta, M., Li, W., Miller, I. & Anderson, P. RNA-binding proteins TIA-1 and TIAR link the phosphorylation of eIF-2α to the assembly of mammalian stress granules. J. Cell Biol. 147, 1431–1442 (1999).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Berlew, E. E. et al. Single-component optogenetic tools for inducible RhoA GTPase signaling. Adv. Biol. 5, e2100810 (2021).

    Google Scholar 

  51. Berlew, E. E., Kuznetsov, I. A., Yamada, K., Bugaj, L. J. & Chow, B. Y. Optogenetic Rac1 engineered from membrane lipid-binding RGS-LOV for inducible lamellipodia formation. Photochem. Photobiol. Sci. 19, 353–361 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  52. Qiao, J., Peng, H. & Dong, B. Development and application of an optogenetic manipulation system to suppress actomyosin activity in Ciona epidermis. Int. J. Mol. Sci. 24, 5707 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Wang, W. et al. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons. Nat. Biotechnol. 35, 864–871 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Tidyr. https://tidyr.tidyverse.org/

  55. Wickham, H. ggplot2. WIREs Comput. Stat. 3, 180–185 (2011).

    Google Scholar 

  56. Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).

    PubMed  CAS  Google Scholar 

  57. Bugaj, L. J. & Lim, W. A. High-throughput multicolor optogenetics in microwell plates. Nat. Protoc. 14, 2205–2228 (2019).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Berlew and B. Chow for helpful discussions on BcLOV4 activity and for plasmids encoding BcLOV(Q355N) and BcLOV-ITSN1; and A. Hughes and M. Good for helpful comments on the manuscript. The authors also thank the Penn Cytomics and Cell Sorting Shared Resource Laboratory for assistance with cell sorting. This work was supported by funding from the National Institutes of Health (R35GM138211 for L.J.B.), the National Science Foundation (Graduate Research Fellowship Program to W.B., CAREER 2145699 to L.J.B.), and the Penn Center for Precision Engineering for Health (CPE4H). Cell sorting was performed on a BD FACSAria Fusion that was obtained through NIH S10 1S10OD026986.

Author information

Authors and Affiliations

Authors

Contributions

W.B. and L.J.B. conceived the study. W.B. generated Melt and its integration into molecular circuits. Z.H. discovered and characterized thermostable Melt variants, which were then integrated into circuits by Z.H. and W.B. W.B. and P.I. developed and validated the thermoPlate. D.W. and T.R.M. validated cluster-induced cell killing. W.B., Z.H. and P.I. performed and analyzed all experiments. L.J.B. supervised the work. W.B., Z.H. and L.J.B. wrote the manuscript and produced the figures. All of the authors edited the manuscript.

Corresponding author

Correspondence to Lukasz J. Bugaj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks G. Woolley, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information

Reporting Summary

Peer Review File

Supplementary Video 1

Reversible membrane binding of Melt using temperature.

Supplementary Video 2

Temperature-controlled nucleocytoplasmic shuttling of MeltNLS/NES.

Supplementary Video 3

Thermal control of Erk activity in mammalian temperature ranges using MeltEGFR-37.

Supplementary Video 4

Temperature-controlled nucleocytoplasmic shuttling of MeltNLS/NES-40 in mammalian temperature ranges.

Supplementary Video 5

Reversible changes in cell size through thermal control of MeltITSN1-37.

Supplementary Video 6

Temperature-inducible cell death using MeltCasp1-37.

Source data

Source Data Figs. 1–6

Source data for all plots.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benman, W., Huang, Z., Iyengar, P. et al. A temperature-inducible protein module for control of mammalian cell fate. Nat Methods 22, 539–549 (2025). https://doi.org/10.1038/s41592-024-02572-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-024-02572-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing