Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A highly stable monomeric red fluorescent protein for advanced microscopy

Abstract

The stability of fluorescent proteins (FPs) is crucial for imaging techniques such as live-cell imaging, super-resolution microscopy and correlative light and electron microscopy. Although stable green and yellow FPs are available, stable monomeric red FPs (RFPs) remain limited. Here we develop an extremely stable monomeric RFP named mScarlet3-H and determine its structure at a 1.5 Å resolution. mScarlet3-H exhibits remarkable resistance to high temperature, chaotropic conditions and oxidative environments, enabling efficient correlative light and electron microscopy imaging and rapid (less than 1 day) whole-organ tissue clearing. In addition, its high photostability allows long-term three-dimensional structured illumination microscopy imaging of mitochondrial dynamics with minimal photobleaching. It also facilitates dual-color live-cell stimulated emission depletion imaging with a high signal-to-noise ratio and strong specificity. Systematic benchmarking against high-performing RFPs established mScarlet3-H as a highly stable RFP for multimodality microscopy in cell cultures and model organisms, complementing green FPs for multiplexed imaging in zebrafish, mice and Nicotiana benthamiana.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural comparison of mScarlet3-related FPs and the basic properties of mScarlet3-H.
Fig. 2: Comparisons of the stability of FPs under different conditions and representative CLEM images of diverse organelles labeled with mScarlet3-H.
Fig. 3: The robust thermal stability of mScarlet3-H enables rapid tissue clearing.
Fig. 4: The high photostability of mScarlet3-H enables long-term 3D-SIM imaging and STED imaging of different organelles.

Similar content being viewed by others

Data availability

The coordinates and structure factors for mScarlet-H and mScarlet3-H have been deposited in the Protein Data Bank with accession numbers 8ZXO and 8ZXH, respectively. The most essential raw datasets, including source files for supplementary figures and raw unprocessed images, are available on figshare at https://doi.org/10.6084/m9.figshare.28398170.v1 (ref. 50). The remaining files are available from the corresponding author upon request. All plasmids used in this study are available on WeKwikGene at https://wekwikgene.wllsb.edu.cn/. Source data are provided with this paper.

References

  1. Watanabe, S. et al. Protein localization in electron micrographs using fluorescence nanoscopy. Nat. Methods 8, 80–84 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Fu, Z. et al. mEosEM withstands osmium staining and Epon embedding for super-resolution CLEM. Nat. Methods 17, 55–58 (2020).

    Article  CAS  PubMed  Google Scholar 

  3. Campbell, B. C., Paez-Segala, M. G., Looger, L. L., Petsko, G. A. & Liu, C. F. Chemically stable fluorescent proteins for advanced microscopy. Nat. Meth. https://doi.org/10.1038/s41592-022-01660-7 (2022).

  4. Tanida, I., Kakuta, S., Trejo, J. A. O. & Uchiyama, Y. Visualization of cytoplasmic organelles via in-resin CLEM using an osmium-resistant far-red protein. Sci. Rep. 10, 11314 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tanida, I. et al. Two-color in-resin CLEM of Epon-embedded cells using osmium resistant green and red fluorescent proteins. Sci. Rep. 10, 21871 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peng, D. et al. Improved fluorescent proteins for dual-colour post-embedding CLEM. Cells 11, 1077 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tainaka, K., Kuno, A., Kubota, S. I., Murakami, T. & Ueda, H. R. Chemical principles in tissue clearing and staining protocols for whole-body cell profiling. Annu. Rev. Cell Dev. Biol. 32, 1–29 (2015).

    Google Scholar 

  8. Hirano, M. et al. A highly photostable and bright green fluorescent protein. Nat. Biotechnol. 40, 1132–1142 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang, H. et al. Bright and stable monomeric green fluorescent protein derived from StayGold. Nat. Meth. https://doi.org/10.1038/s41592-024-02203-y (2024).

  10. Ando, R. et al. StayGold variants for molecular fusion and membrane-targeting applications. Nat. Meth. https://doi.org/10.1038/s41592-023-02085-6 (2023).

  11. Ivorra-Molla, E. et al. A monomeric StayGold fluorescent protein. Nat. Biotechnol. https://doi.org/10.1038/s41587-023-02018-w (2023).

  12. Shcherbakova, D. M., Subach, O. M. & Verkhusha, V. V. Red fluorescent proteins: advanced imaging applications and future design. Angew. Chem. Int. Ed. 51, 10724–10738 (2012).

    Article  CAS  Google Scholar 

  13. Bindels, D. S. et al. mScarlet: a bright monomeric red fluorescent protein for cellular imaging. Nat. Meth. 14, 53–56 (2017).

    Article  CAS  Google Scholar 

  14. Gadella, T. W. J. et al. mScarlet3: a brilliant and fast-maturing red fluorescent protein. Nat. Meth. 20, 541–545 (2023).

    Article  Google Scholar 

  15. Ai, H., Olenych, S. G., Wong, P., Davidson, M. W. & Campbell, R. E. Hue-shifted monomeric variants of Clavulariacyan fluorescent protein: identification of the molecular determinants of color and applications in fluorescence imaging. BMC Biol. 6, 13 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cranfill, P. J. et al. Quantitative assessment of fluorescent proteins. Nat. Meth. 13, 557–562 (2016).

    Article  CAS  Google Scholar 

  17. Qiao, C. et al. Rationalized deep learning super-resolution microscopy for sustained live imaging of rapid subcellular processes. Nat. Biotechnol. 41, 367–377 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Fenno, L. E. et al. Comprehensive dual- and triple-feature intersectional single-vector delivery of diverse functional payloads to cells of behaving mammals. Neuron 107, 836–853.e11 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Paez-Segala, M. G. et al. Fixation-resistant photoactivatable fluorescent proteins for CLEM. Nat. Meth. 12, 215–218 (2015).

    Article  CAS  Google Scholar 

  20. Shaner, N. C. et al. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat. Meth. 5, 545–551 (2008).

    Article  CAS  Google Scholar 

  21. Shaner, N. C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Shen, Y., Chen, Y., Wu, J., Shaner, N. C. & Campbell, R. E. Engineering of mCherry variants with long Stokes shift, red-shifted fluorescence, and low cytotoxicity. PLoS ONE 12, e0171257 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chu, J. et al. Non-invasive intravital imaging of cellular differentiation with a bright red-excitable fluorescent protein. Nat. Meth. 11, 572–578 (2014).

    Article  CAS  Google Scholar 

  24. Paul-Gilloteaux, P. et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Meth. 14, 102–103 (2017).

    Article  CAS  Google Scholar 

  25. Yi, Y. et al. Mapping of individual sensory nerve axons from digits to spinal cord with the transparent embedding solvent system. Cell Res. 34, 124–139 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tian, T., Yang, Z. & Li, X. Tissue clearing technique: recent progress and biomedical applications. J. Anat. 238, 489–507 (2021).

    Article  PubMed  Google Scholar 

  27. Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).

    Article  CAS  PubMed  Google Scholar 

  28. Hense, A. et al. Monomeric Garnet, a far-red fluorescent protein for live-cell STED imaging. Sci. Rep. 5, 18006 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wegner, W. et al. In vivo mouse and live cell STED microscopy of neuronal actin plasticity using far-red emitting fluorescent proteins. Sci. Rep. 7, 11781 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Matela, G. et al. A far-red emitting fluorescent marker protein, mGarnet2, for microscopy and STED nanoscopy. Chem. Commun. 53, 979–982 (2016).

    Article  Google Scholar 

  31. Verma, V. & Aggarwal, R. K. A comparative analysis of similarity measures akin to the Jaccard index in collaborative recommendations: empirical and theoretical perspective. Soc. Netw. Anal. Min. 10, 1–16 (2020).

    Article  Google Scholar 

  32. Schroeder, L. K. et al. Dynamic nanoscale morphology of the ER surveyed by STED microscopy. J. Cell Biol. 218, 83–96 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Glogger, M. et al. Synergizing exchangeable fluorophore labels for multitarget STED microscopy. ACS Nano 16, 17991–17997 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Espadas, J. et al. Dynamic constriction and fission of endoplasmic reticulum membranes by reticulon. Nat. Commun. 10, 5327 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lin, C., White, R. R., Sparkes, I. & Ashwin, P. Modeling endoplasmic reticulum network maintenance in a plant cell. Biophys. J. 113, 214–222 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren, W. et al. Visualization of cristae and mtDNA interactions via STED nanoscopy using a low saturation power probe. Light. Sci. Appl. 13, 116 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rowland, A. A. & Voeltz, G. K. Endoplasmic reticulum–mitochondria contacts: function of the junction. Nat. Rev. Mol. Cell Biol. 13, 607–615 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ai, H., Henderson, J. N., Remington, S. J. & Campbell, R. E. Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem. J. 400, 531–540 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Royant, A. & Noirclerc-Savoye, M. Stabilizing role of glutamic acid 222 in the structure of enhanced green fluorescent protein. J. Struct. Biol. 174, 385–390 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Scott, D. J. et al. A novel ultra-stable, monomeric green fluorescent protein for direct volumetric imaging of whole organs using CLARITY. Sci. Rep. 8, 667 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Close, D. W. et al. Thermal green protein, an extremely stable, nonaggregating fluorescent protein created by structure‐guided surface engineering. Proteins Struct. Funct. Bioinform. 83, 1225–1237 (2015).

    Article  CAS  Google Scholar 

  42. Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).

    Article  Google Scholar 

  43. Huang, J. & MacKerell, A. D. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Aho, N. et al. Scalable constant pH molecular dynamics in GROMACS. J. Chem. Theory Comput. 18, 6148–6160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Jansen, A., Aho, N., Groenhof, G., Buslaev, P. & Hess, B. phbuilder: a tool for efficiently setting up constant pH molecular dynamics simulations in GROMACS. J. Chem. Inf. Model. 64, 567–574 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  PubMed  Google Scholar 

  47. Wang, S. et al. Epon post embedding correlative light and electron microscopy. J. Vis. Exp. https://doi.org/10.3791/66141 (2024).

  48. Demmerle, J., Wegel, E., Schermelleh, L. & Dobbie, I. M. Assessing resolution in super-resolution imaging. Methods 88, 3–10 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. Chmyrov, A. et al. Nanoscopy with more than 100,000 ‘doughnuts’. Nat. Methods 10, 737–740 (2013).

    Article  CAS  PubMed  Google Scholar 

  50. Xiong, H. Dataset title: A highly stable monomeric red fluorescent protein for advanced microscopy. figshare https://doi.org/10.6084/m9.figshare.28398170.v1 (2025).

Download references

Acknowledgements

We thank S. Papadaki from Westlake Laboratory for verifying all plasmid sequences and depositing them to WeKwikGene. We thank E. Snapp from Janelia Research campus for the help with the interpretation of OSER imaging results. This project was supported by the National Natural Science Foundation of China (grant no. 32201235 to Z.F.), the Natural Science Foundation of Fujian Province, China (grant nos. 2022J01287, 2023Y9272 and 2024J09036 to Z.F. and 2024J01074 to C.W.), the Research Foundation for Advanced Talents at Fujian Medical University, China (grant nos. XRCZX2021013 to Z.F. and XRCZX2022031 to C.W.), the Finance Special Science Foundation of Fujian Province, China (grant no. 22SCZZX002 to Z.F.), Foundation of NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate, Fujian Maternity and Child Health Hospital (grant no. 2022-NHP-04 to Z.F.), Open Project Fund of Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research (grant no. FKLDSR-202102 to Z.F.), Foundation of Westlake University, Westlake Laboratory of Life Sciences and Biomedicine, National Natural Science Foundation of China (grant no. 32171093 to K.D.P.), and ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang (grant no. 2024SSYS0031 to K.D.P.). We thank L. Zhou, M. Wu and X. Lin at the Public Technology Service Center, Fujian Medical University for support with EM sample preparation and EM imaging.

Author information

Authors and Affiliations

Authors

Contributions

Z.F. conceived and supervised the whole project. H.X., Q.C. and C.W. engineered mScarlet3-H and measured its properties. H.X., P.L. and D.Q. did STED imaging. Q.C. and M. Liu did SIM imaging. H.Z. and J.D. performed rapid tissue clearing. S.W. did CLEM imaging. K.D.P. and W.Z. tested the photostability of mScarlet3-H. P.L. and Y.W. measured the pKa of mScarlet3-H. Y. Cui and Yanbin Li performed experiments on mScarlet3-H’s performance in plants. F.Z. did experiments on mScarlet3-H’s performance in zebrafish. Y.W. and G.F. helped to do EM sample preparation. Yiwei Yang and Y. Chen cultured cells. C.Y. conducted the MD simulation. J.X. analyzed the images from rapid tissue clearing. D.L., T.J. and W.F. helped with SIM imaging and analyzing the images of 3D-SIM imaging. F.H., Y.X. and R.Y. helped to purify mScarlet3-H. Q.Z., S.F., M. Li, Yu Li and Yufeng Yang solved the crystal structures of mScarlet-H and mScarlet3-H. Z.F., K.D.P. and Q.Z. wrote the paper. All authors reviewed the paper.

Corresponding authors

Correspondence to Congxian Wu, Qingbing Zheng, Kiryl D. Piatkevich or Zhifei Fu.

Ethics declarations

Competing interests

A Chinese patent application (no. 202410568362.4) covering the use of mScarlet3-H for CLEM, rapid tissue clearing, expansion microscopy and fluorescent microscopy has been filed in which the Fujian Medical University is the applicant and Z.F., Y.W., H.X., Q.C., C.W., S.W. and Yiwei Yang are the inventors. The other authors declare no competing interests.

Peer review

Peer review information

Nature Methods thanks Benjamin Campbel, Takeharu Nagai and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available. Primary Handling Editor: Rita Strack, in collaboration with the Nature Methods team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21 and Tables 1–21.

Reporting Summary

Peer Review File

Supplementary Video 1

Long-term super-resolution imaging of the ER and microtubule dynamics in live HeLa cells acquired with CSU-W1 SoRa imaging setup (×100 NA 1.41, total duration 01:18 h:min; plays at 100 f.p.s.). ER: mScarlet3-H; EMTB: mBaoJin.

Supplementary Video 2

Long-term super-resolution imaging of mitochondria and EB3 dynamics in live HeLa cells acquired with CSU-W1 SoRa imaging setup (×100 NA 1.41, total duration 50:45 m:s; plays at 100 f.p.s.). Mito: mScarlet3-H; EB3: mBaoJin.

Supplementary Video 3

Long-term super-resolution imaging of mitochondria and lifeact labeled actin dynamics in live HeLa cells acquired with CSU-W1 SoRa imaging setup (x100 NA 1.41, total duration 58:29 m:s; plays at 20 f.p.s.). Lifeact: mScarlet3-H; Mito: mBaoJin.

Supplementary Video 4

Long-term super-resolution imaging of ER and mitochondria dynamics in live HeLa cells acquired with CSU-W1 SoRa imaging setup (×100 NA 1.41, total duration 08:15 m:s; plays at 10 f.p.s.). ER: mScarlet3-H; Mito: mBaoJin.

Supplementary Video 5

Long-term imaging of cell mitosis of zebrafish larva labeled by mScarlet3-H using a STELLARIS 8 FALCON confocal microscope.

Supplementary Video 6

Long-term imaging of H2B-mScarlet3-H in a developing zebrafish larva using a STELLARIS 8 FALCON confocal microscope.

Supplementary Video 7

Video showing the fluorescence dynamics of HeLa cells expressing H2B-mScarlet3-H alternately treated with PBS and 5 M GdnHCl.

Supplementary Video 8

Long-term super-resolution imaging of the dynamics of mitochondria labeled by mScarlet3-H in live COS-7 cells using a 3D-SIM imaging setup (×100 NA 1.49, total duration 2 h).

Supplementary Video 9

Long-term super-resolution imaging of the dynamics of ER sheet labeled by mScarlet3-H in live COS-7 cells using a STED imaging setup (×100 NA 1.45, total duration 09:00 min:s).

Supplementary Video 10

Long-term super-resolution imaging of the dynamics of ER sheet fusion labeled by mScarlet3-H in live COS-7 cells using a STED imaging setup (×100 NA 1.45, total duration 10.8 s).

Supplementary Video 11

Long-term super-resolution imaging of the dynamics of ER sheet fission labeled by mScarlet3-H in live COS-7 cells using a STED imaging setup (×100 NA 1.45, total duration 3:18 m:s).

Supplementary Video 12

Long-term super-resolution imaging of the dynamics of ER ball labeled by mScarlet3-H in live COS-7 cells using a STED imaging setup (×100 NA 1.45, total duration 14.4 s).

Supplementary Video 13

Long-term super-resolution imaging of the dynamics of ER and mitochondria in live COS-7 cells using a STED imaging setup (×100 NA 1.45, total duration 5:32 m:s). ER: mScarlet3-H; Mito: HBmito Crimson.

Source data

Source Data Fig. 1

Source data.

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, H., Chang, Q., Ding, J. et al. A highly stable monomeric red fluorescent protein for advanced microscopy. Nat Methods 22, 1288–1298 (2025). https://doi.org/10.1038/s41592-025-02676-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41592-025-02676-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing