Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Resource
  • Published:

A single-cell mass cytometry-based atlas of the developing mouse brain

Abstract

Development of the mammalian brain requires precise molecular changes across diverse cell lineages. While single-cell RNA abundances in the developing brain have been characterized by single-cell RNA sequencing (scRNA-seq), single-cell protein abundances have not been characterized. To address this gap, we performed mass cytometry on the whole brain at embryonic day (E)11.5–E12.5 and the telencephalon, the diencephalon, the mesencephalon and the rhombencephalon at E13.5–postnatal day (P)4 from C57/BL6 mice. Using a 40-antibody panel to analyze 24,290,787 cells from two to four biological replicates per sample, we identify 85 molecularly distinct cell clusters from distinct lineages. Our analyses confirm canonical molecular pathways of neurogenesis and gliogenesis, and predict two distinct trajectories for cortical oligodendrogenesis. Differences in protein versus RNA expression from mass cytometry and scRNA-seq, validated by immunohistochemistry and RNAscope in situ hybridization (ISH), demonstrate the value of protein-level measurements for identifying functional cell states. Our findings show the utility of mass cytometry as a scalable platform for single-cell profiling of brain tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Classification of cells in the developing mouse brain by mass cytometry.
Fig. 2: Corroboration of mass cytometry protein measurements by IHC.
Fig. 3: Spatiotemporal profile of cell abundances in the developing mouse brain.
Fig. 4: Comparison of protein and mRNA expression patterns in the developing mouse brain.
Fig. 5: Differentiation trajectories of SOX2+nestin+ cells in the developing mouse brain.
Fig. 6: Differentiation trajectories and molecular dynamics in the telencephalon.
Fig. 7: Microglia and macrophage expansion and putative phagocytic cargoes in the developing mouse brain.
Fig. 8: Overview of key processes in mouse brain development.

Similar content being viewed by others

Data availability

Requests for reagents and other resources will be fulfilled by E.R.Z. (ezunder@virginia.edu). Raw single-cell mass cytometry FCS files have been deposited at FlowRepository (https://flowrepository.org/) under accession number FR-FCM-Z7CQ. FCS files for each individual sample (debarcoded, normalized and batch corrected) and clean-up gating used for sample preprocessing are available on Cytobank (https://cytobank.org/cytobank/experiments/) under experiment IDs 105280–105284. The scRNA-seq dataset from La Manno et al.42 is available at the Sequence Read Archive (https://www.ncbi.nlm.nih.gov/sra) under accession PRJNA637987. Source data are provided with this paper.

Code availability

Code used to perform analysis of mass cytometry data (as detailed in the Methods) was adapted from standard R and Python packages (for example, UMAP version 0.5.3, LeidenAlg version 0.8.2, Seurat version 4.3.0, URD version 1.1.1 and ggplot2 version 3.4.0) and is available on GitHub at https://github.com/zunderlab/VanDeusen-et-al.-CNS-Development-Manuscript. More detailed information is available upon request.

References

  1. Yuste, R. et al. A community-based transcriptomics classification and nomenclature of neocortical cell types. Nat. Neurosci. 23, 1456–1468 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. La Manno, G. et al. Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167, 566–580 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kee, N. et al. Single-cell analysis reveals a close relationship between differentiating dopamine and subthalamic nucleus neuronal lineages. Cell Stem Cell 20, 29–40 (2017).

    CAS  Google Scholar 

  4. Frazer, S. et al. Transcriptomic and anatomic parcellation of 5-HT3AR expressing cortical interneuron subtypes revealed by single-cell RNA sequencing. Nat. Commun. 8, 14219 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chen, Y.-J. J. et al. Single-cell RNA sequencing identifies distinct mouse medial ganglionic eminence cell types. Sci. Rep. 7, 45656 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yuzwa, S. A. et al. Developmental emergence of adult neural stem cells as revealed by single-cell transcriptional profiling. Cell Rep. 21, 3970–3986 (2017).

    Article  PubMed  CAS  Google Scholar 

  7. Mayer, C. et al. Developmental diversification of cortical inhibitory interneurons. Nature 555, 457–462 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Tiklová, K. et al. Single-cell RNA sequencing reveals midbrain dopamine neuron diversity emerging during mouse brain development. Nat. Commun. 10, 581 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wizeman, J. W., Guo, Q., Wilion, E. M. & Li, J. Y. Specification of diverse cell types during early neurogenesis of the mouse cerebellum. eLife 8, e42388 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Romanov, R. A. et al. Molecular design of hypothalamus development. Nature 582, 246–252 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Zhou, X. et al. Cellular and molecular properties of neural progenitors in the developing mammalian hypothalamus. Nat. Commun. 11, 4063 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Kim, D. W. et al. The cellular and molecular landscape of hypothalamic patterning and differentiation from embryonic to late postnatal development. Nat. Commun. 11, 4360 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Lee, D. R. et al. Transcriptional heterogeneity of ventricular zone cells in the ganglionic eminences of the mouse forebrain. eLife 11, e71864 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Bandura, D. R. et al. Mass cytometry: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry. Anal. Chem. 81, 6813–6822 (2009).

    Article  PubMed  CAS  Google Scholar 

  16. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Leelatian, N. et al. Single cell analysis of human tissues and solid tumors with mass cytometry. Cytometry B Clin. Cytom. 92, 68–78 (2017).

    Article  PubMed  CAS  Google Scholar 

  18. Hu, A. X. et al. in Brain Tumor Stem Cells: Methods and Protocols (eds Singh, S. K. & Venugopal, C.) 155–168 (Springer, 2019).

  19. Leelatian, N. et al. Unsupervised machine learning reveals risk stratifying glioblastoma tumor cells. eLife 9, e56879 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Galdieri, L. et al. Defining phenotypic and functional heterogeneity of glioblastoma stem cells by mass cytometry. JCI Insight 6, 128456 (2021).

    PubMed  Google Scholar 

  21. Ajami, B. et al. Single-cell mass cytometry reveals distinct populations of brain myeloid cells in mouse neuroinflammation and neurodegeneration models. Nat. Neurosci. 21, 541–551 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Mrdjen, D. et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 48, 380–395 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Böttcher, C. et al. Human microglia regional heterogeneity and phenotypes determined by multiplexed single-cell mass cytometry. Nat. Neurosci. 22, 78–90 (2019).

    Article  PubMed  Google Scholar 

  24. Böttcher, C. et al. Single-cell mass cytometry of microglia in major depressive disorder reveals a non-inflammatory phenotype with increased homeostatic marker expression. Transl. Psychiatry 10, 310 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Li, S. et al. Microglial deletion and inhibition alleviate behavior of post-traumatic stress disorder in mice. J. Neuroinflammation 18, 7 (2021).

    CAS  Google Scholar 

  26. Xie, M. et al. TREM2 interacts with TDP-43 and mediates microglial neuroprotection against TDP-43-related neurodegeneration. Nat. Neurosci. 25, 26–38 (2022).

    Article  PubMed  CAS  Google Scholar 

  27. Keeler, A. B. et al. A developmental atlas of somatosensory diversification and maturation in the dorsal root ganglia by single-cell mass cytometry. Nat. Neurosci. 25, 1543–1558 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Ogrodnik, M. et al. Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell Metab. 29, 1061–1077 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Lombard-Banek, C., Moody, S. A. & Nemes, P. Single-cell mass spectrometry for discovery proteomics: quantifying translational cell heterogeneity in the 16-cell frog (Xenopus) embryo. Angew. Chem. 128, 2500–2504 (2016).

    Article  Google Scholar 

  31. Budnik, B., Levy, E., Harmange, G. & Slavov, N. SCoPE-MS: mass spectrometry of single mammalian cells quantifies proteome heterogeneity during cell differentiation. Genome Biol. 19, 161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Mimitou, E. P. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 39, 1246–1258 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Chen, V. S. et al. Histology atlas of the developing prenatal and postnatal mouse central nervous system, with emphasis on prenatal days E7.5 to E18.5. Toxicol. Pathol. 45, 705–744 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mi, D. et al. Early emergence of cortical interneuron diversity in the mouse embryo. Science 360, 81–85 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Carter, R. A. et al. A single-cell transcriptional atlas of the developing murine cerebellum. Curr. Biol. 28, 2910–2920 (2018).

    Article  PubMed  CAS  Google Scholar 

  37. Guo, Q. & Li, J. Y. H. Defining developmental diversification of diencephalon neurons through single cell gene expression profiling. Development 146, dev174284 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Zhang, Y. et al. Cortical neural stem cell lineage progression is regulated by extrinsic signaling molecule Sonic hedgehog. Cell Rep. 30, 4490–4504 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Li, Z. et al. Transcriptional priming as a conserved mechanism of lineage diversification in the developing mouse and human neocortex. Sci. Adv. 6, eabd2068 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ruan, X. et al. Progenitor cell diversity in the developing mouse neocortex. Proc. Natl Acad. Sci. USA 118, e2018866118 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Di Bella, D. J. et al. Molecular logic of cellular diversification in the mouse cerebral cortex. Nature 595, 554–559 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. La Manno, G. et al. Molecular architecture of the developing mouse brain. Nature 596, 92–96 (2021).

    Article  PubMed  Google Scholar 

  43. Sarropoulos, I. et al. Developmental and evolutionary dynamics of cis-regulatory elements in mouse cerebellar cells. Science 373, eabg4696 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Turrero García, M. et al. Transcriptional profiling of sequentially generated septal neuron fates. eLife 10, e71545 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Farrell, J. A. et al. Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis. Science 360, eaar3131 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Fienberg, H. G., Simonds, E. F., Fantl, W. J., Nolan, G. P. & Bodenmiller, B. A platinum-based covalent viability reagent for single-cell mass cytometry. Cytometry A 81A, 467–475 (2012).

    Article  CAS  Google Scholar 

  47. Zunder, E. R. et al. Palladium-based mass tag cell barcoding with a doublet-filtering scheme and single-cell deconvolution algorithm. Nat. Protoc. 10, 316–333 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Finck, R. et al. Normalization of mass cytometry data with bead standards. Cytometry A 83, 483–494 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Fread, K. I., Strickland, W. D., Nolan, G. P. & Zunder, E. R. An updated barcoding tool for mass cytometry with cell type-specific and cell-sample specific stringency adjustment. Pac. Symp. Biocomput. 22, 588–598 (2017).

    PubMed  Google Scholar 

  50. Schuyler, R. P. et al. Minimizing batch effects in mass cytometry data. Front. Immunol. 10, 2367 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Traag, V. A., Waltman, L. & van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. McInnes, L., Healy, J., Saul, N. & Großberger, L. UMAP: uniform manifold approximation and projection. J. Open Source Softw. 3, 861 (2018).

    Article  Google Scholar 

  53. Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Schüller, U. et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 14, 123–134 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Seto, Y., Ishiwata, S. & Hoshino, M. Characterization of Olig2 expression during cerebellar development. Gene Expr. Patterns 15, 1–7 (2014).

    CAS  Google Scholar 

  56. Riccio, O. et al. New pool of cortical interneuron precursors in the early postnatal dorsal white matter. Cereb. Cortex 22, 86–98 (2012).

    Article  CAS  Google Scholar 

  57. Pfenninger, C. V. et al. CD133 is not present on neurogenic astrocytes in the adult subventricular zone, but on embryonic neural stem cells, ependymal cells, and glioblastoma cells. Cancer Res. 67, 5727–5736 (2007).

    Article  PubMed  CAS  Google Scholar 

  58. Ono, K. et al. Regional- and temporal-dependent changes in the differentiation of Olig2 progenitors in the forebrain, and the impact on astrocyte development in the dorsal pallium. Dev. Biol. 320, 456–468 (2008).

    Article  PubMed  CAS  Google Scholar 

  59. Zheng, K. et al. Molecular and genetic evidence for the PDGFRα-independent population of oligodendrocyte progenitor cells in the developing mouse brain. J. Neurosci. 38, 9505–9513 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Kessaris, N. et al. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9, 173–179 (2006).

    Article  PubMed  CAS  Google Scholar 

  61. VanRyzin, J. W. Phagocytic microglia in development: are they what they eat? Brain Behav. Immun. Health 18, 100373 (2021).

    Google Scholar 

  62. Qian, X. et al. Timing of CNS cell generation: a programmed sequence of neuron and glial cell production from isolated murine cortical stem cells. Neuron 28, 69–80 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. Gao, P. et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 159, 775–788 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Verity, A. N. & Campagnoni, A. T. Regional expression of myelin protein genes in the developing mouse brain: in situ hybridization studies. J. Neurosci. Res. 21, 238–248 (1988).

    Article  PubMed  CAS  Google Scholar 

  65. Jakovcevski, I. & Zecevic, N. Sequence of oligodendrocyte development in the human fetal telencephalon. Glia 49, 480–491 (2005).

    Article  PubMed  Google Scholar 

  66. Englund, C. et al. Pax6, Tbr2, and Tbr1 are expressed sequentially by radial glia, intermediate progenitor cells, and postmitotic neurons in developing neocortex. J. Neurosci. 25, 247–251 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Sessa, A. et al. The Tbr2 molecular network controls cortical neuronal differentiation through complementary genetic and epigenetic pathways. Cereb. Cortex 27, 3378–3396 (2017).

    Google Scholar 

  68. Zhou, Q., Wang, S. & Anderson, D. J. Identification of a novel family of oligodendrocyte lineage-specific basic helix–loop–helix transcription factors. Neuron 25, 331–343 (2000).

    Article  PubMed  CAS  Google Scholar 

  69. Li, Q. et al. Developmental heterogeneity of microglia and brain myeloid cells revealed by deep single-cell RNA sequencing. Neuron 101, 207–223 (2019).

    Article  PubMed  CAS  Google Scholar 

  70. Hughes, A. N. & Appel, B. Microglia phagocytose myelin sheaths to modify developmental myelination. Nat. Neurosci. 23, 1055–1066 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Fu, Y. et al. Heterogeneity of glial progenitor cells during the neurogenesis-to-gliogenesis switch in the developing human cerebral cortex. Cell Rep. 34, 108788 (2021).

    Article  PubMed  CAS  Google Scholar 

  72. Giesen, C. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 11, 417–422 (2014).

    Article  PubMed  CAS  Google Scholar 

  73. Angelo, M. et al. Multiplexed ion beam imaging (MIBI) of human breast tumors. Nat. Med. 20, 436–442 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Volovitz, I. et al. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells. BMC Neurosci. 17, 30 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Guidelines for Mass Cytometry Panel Design White Paper No. PN 13-01_150711 (Fluidigm, 2015).

Download references

Acknowledgements

Research reported in this publication was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number R01NS111220 to E.R.Z. and C.D.D. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Further support was provided by the 3Cavaliers Pilot research program to C.D.D. and E.R.Z. A.L.V.D. was supported by a UVA BRAIN Presidential Fellowship. S.K. was supported by the Owens Family Foundation. S.M.G. was supported by the National Institute of General Medical Sciences of the National Institutes of Health under the Systems and Biomedical Data Science Training Program, award number T32GM145443. C.M.W. was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health under the Cardiovascular Research Training Program, award number T32HL007284. A.B.K. was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number F32GM125147. K.I.F. was supported by the National Institute of General Medical Sciences of the National Institutes of Health under the Systems and Biomedical Data Science Training Program, award number T32GM136615. C.D.D. was supported by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number R01NS091617. We thank A. Spano for contributing protein chemistry expertise and resources. We thank H. Zong (University of Virginia) for providing cell lines to validate antibodies and for providing feedback on the manuscript. We thank S. Kucenas (University of Virginia) for providing the anti-SOX10 antibody and feedback on the manuscript. We thank T. Müller and C. Birchmeier (Max Delbrück Center) for providing the anti-FABP7 antibody. We thank B. Condron, A. Güler, M. Hunter-Chang, A. Pathak, J. Sewell and E. Stepanova for providing feedback on the manuscript. We thank A. Hirt for assistance with coding and data analysis, K. Warner for assistance with antibody validation and L. Jin for assistance with mouse dissections. We thank the University of Virginia Flow Cytometry Core, RRID SCR_017829 for technical assistance with the CyTOF mass cytometer instrument. We acknowledge Research Computing at the University of Virginia (https://rc.virginia.edu) for providing computational resources and technical support that have contributed to the results reported within this publication.

Author information

Authors and Affiliations

Authors

Contributions

A.L.V.D., C.D.D. and E.R.Z. planned all experiments. A.L.V.D., A.B.K., I.C.G. and J.S. collected tissue and performed single-cell dissociations. A.L.V.D. performed all antibody conjugations. A.L.V.D. validated all antibodies by performing titration experiments on positive and negative control cell samples. A.L.V.D. and E.R.Z. performed the mass cytometry measurements. S.K. and O.Y.C. performed IHC and RNAscope ISH measurements. A.L.V.D., S.K. and J.S. performed microscopy. A.L.V.D., S.M.G., C.M.W, A.B.K., K.I.F. and E.R.Z. wrote scripts for data analysis. A.L.V.D., S.M.G. and E.R.Z. performed data analysis. E.R.Z. and C.D.D. conceived and supervised all aspects of the project. A.L.V.D., S.M.G. and E.R.Z. prepared figures. A.L.V.D., E.R.Z. and C.D.D. wrote the manuscript with input from all authors.

Corresponding authors

Correspondence to Christopher D. Deppmann or Eli R. Zunder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Neuroscience thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Table 1 Antibodies used for mass cytometry

Supplementary information

Supplementary Table 1

Antibodies used for mass cytometry.

Supplementary Fig. 1

Validation of single-cell processing of mouse brain tissue and titration of antibodies for mass cytometry.

Supplementary Fig. 2

Pre-processing of mass cytometry data for the developing mouse brain.

Supplementary Fig. 3

Classification of cells in the developing mouse brain by mass cytometry.

Supplementary Fig. 4

Comparison of protein expression in mouse brain measured by mass cytometry and immunohistochemistry.

Supplementary Fig. 5

Spatiotemporal profile of cell abundances in the developing mouse brain.

Supplementary Fig. 6

Comparison of protein and mRNA expression patterns in the developing mouse brain.

Supplementary Fig. 7

Differentiation trajectories of SOX2+Nestin+ cells in the developing mouse brain.

Supplementary Fig. 8

Differentiation trajectories and molecular dynamics in the telencephalon.

Supplementary Fig. 9

Microglia/macrophage expansion and putative phagocytic cargoes in the developing mouse brain.

Supplementary Data 1

Statistical source data for Supplementary Fig. 2.

Supplementary Data 2

Statistical source data for Supplementary Fig. 9.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Fig. 7

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van Deusen, A.L., Kumar, S., Calhan, O.Y. et al. A single-cell mass cytometry-based atlas of the developing mouse brain. Nat Neurosci 28, 174–188 (2025). https://doi.org/10.1038/s41593-024-01786-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41593-024-01786-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing